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Overview
BRUNO combines the expressiveness of deep neural networks with the data-efficiency
of GPs to model exchangeable sequences of complex observations.

BRUNO can be extended to the conditional case so that it can model sequences of
observations x1, x2, x3, . . . conditionally on a set of labels or tags h1,h2,h3, . . . .

Conditional BRUNO enjoys a few properties that are desirable in practice:
X predictive distribution p(xn|hn, x1:n−1, h1:n−1) is fast to evaluate and to sample from
X p(xn|hn, x1:n−1, h1:n−1) is differentiable with respect to the model parameters
X can be trained efficiently in an RNN-like fashion
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Exchangeability and Bayesian computations

A stochastic process x1, x2, x3 . . . is exchangeable if for all n and all permutations π:
p(x1, . . . , xn) = p

(
xπ(1), . . . , xπ(n)

)
De Finetti’s theorem says that every exchangeable process is a mixture of i.i.d.
processes:

p(x1, . . . , xn) =

∫
p(θ)

n∏
i=1

p(xi|θ)dθ,

where θ is some parameter conditioned on which the data is i.i.d.

x1, . . . , xn ∼ Nn(0,Σ)

with
compound
symmetric
covariance

Σ =


v ρ ρ . . . ρ
ρ v ρ . . . ρ
... ... ... . . . ...
ρ ρ ρ . . . v

 0 ≤ρ< v

x1, . . . xn are i.i.d. with xi ∼ N (θ, v − ρ) conditioned on θ ∼ N (0, ρ)
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De Finetti’s theorem in terms of predictive distributions:

p(xn|x1:n−1) =

∫
p(xn|θ)︸ ︷︷ ︸
likelihood

p(θ|x1:n)︸ ︷︷ ︸
posterior

dθ

This gives two ways for defining models of exchangeable sequences:
1) via explicit Bayesian modelling
2) via exchangeable processes → BRUNO

For conditional real-valued processes, where x1, x2, x3 . . . is associated with h1, h2, h3 . . . ,
de Finetti’s theorem is not proven.

The decomposition of the form p(x1:n|h1:n) =
∫

p(θ)
∏n

i=1 p(xi|hi, θ)dθ exists
if the following conditions hold:

1. p(x1, . . . , xn|h1, . . . , hn) = p
(
xπ(1), . . . , xπ(n)|hπ(1), . . . , hπ(n)

)
2. p(x1:m|h1:m) =

∫
p (x1:n|h1:n) dxm+1:n for 1 ≤ m < n.co
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p(x2|x1,h1:2) = p(z12|z11)p(z22|z12)
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∂x2

∣∣p(x1|h1) = p(z11)p(z
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A1: dimensions {zd}d=1,...,D are independent, so p(z) =
∏D

d=1 p(zd)

A2: for each dimension d , we assume that (zd
1 , . . . zd

n ) ∼ MVNn(µ
d1,Σd)

- mean µd1 is a 1× n vector filled with µd ∈ R
- covariance n × n matrix Σd with Σd

ii = vd and Σd
ij ,i 6=j = ρd where

0 ≤ ρd < vd
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For a sequence (x1,h1), (x2,h2), . . . (xN,hN) the model is trained to maximise

L =

N∑
n=m+1

log p(xn|hn, x1:m,h1:m)

with respect to Real NVP parameters and Σ parameters for every latent dimension.

Real NVP∗

f : X 7→ Z with X = RD and Z = RD

- f is bijective
- forward z = f (x) and inverse x = f −1(z) mappings are equally expensive
- computing the Jacobian takes O(D)

Coupling layer - the main building block of Real NVP:{
y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

scales and translates only half of
the input dimensions at a time;

s and t are deep neural nets

For a conditional Real NVP mapping z = fh(x), we can make s and t depend on h
by adding a bias computed from the features of h to every layer inside s and t.
Given a distribution p(z), we can evaluate p(x|h) using the change of variables formula:

p(x|h) = p(z)

∣∣∣∣∣det

(
∂fh(x)
∂x

)∣∣∣∣∣
∗L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. In ICLR’17

Exchangeable Gaussian processes

In a GP , where any finite collection (z1, . . . zn) ∼ MVNn(µ1,Σ) with a compound
symmetric Σ, recurrent updates for the params of p(zn+1|z1:n) = N (µn+1, vn+1) are:

µn+1 = (1− dn)µn + dnzn
vn+1 = (1− dn)vn + dn(v − ρ)

with dn = ρ/v+ρ(n−1)

µ1 = µ, v1 = v

O(n) runtime and O(1) memory complexity!

Experiments

Conditional BRUNO trained on ShapeNet chairs and airplanes
Conditional BRUNO prior samples
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Figure 5: Results for ShapeNet view reconstruction for unseen chairs and planes from the test set
(shown left). Models were trained to reconstruct views from a single orientation. Top
row: images/views generated by a C-VAE model; middle row images/views generated
by Versa; bottom row: ground truth images. Views are spaced evenly every 30 degrees
in azimuth.
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