Conditional BRUNO: A Deep Recurrent Process for Exchangeable Labelled Data

Iryna Korshunova ${ }^{1}$ Yarin Gal ${ }^{2}$ Joni Dambre ${ }^{1}$ Arthur Gretton ${ }^{3}$
${ }^{1}$ Ghent University ${ }^{2}$ University of Oxford ${ }^{3}$ Gatsby Unit, University College London

Overview

BRUNO combines the expressiveness of deep neural networks with the data-efficiency of $\mathcal{G P s}$ to model exchangeable sequences of complex observations.

BRUNO can be extended to the conditional case so that it can model sequences of observations $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \ldots$ conditionally on a set of labels or tags $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \boldsymbol{h}_{3}$,

Conditional BRUNO enjoys a few properties that are desirable in practice: \checkmark predictive distribution $p\left(x_{n} \mid h_{n}, x_{1: n-1}, h_{1: n-1}\right)$ is fast to evaluate and to sample from $\checkmark p\left(x_{n} \mid h_{n}, x_{1: n-1}, h_{1: n-1}\right)$ is differentiable with respect to the model parameters \checkmark can be trained efficiently in an RNN-like fashion

Exchangeability and meta-learning

$\begin{gathered} \begin{array}{c} \text { Given a } \\ \text { ferw } \\ \text { from new classes } \end{array} \\ 77 \\ 77 \\ 4 \mathbf{4}^{4} \end{gathered}$	Classify new examples $\begin{aligned} & 47 \\ & 79 \end{aligned}$	Given a few shots from a new class 222	Generate new examples 222	Given a few examples with tags from a new class $\begin{array}{lll}270 & 30 & 111\end{array}$	Generate samples conditioned on tags $\varepsilon 3$
BrUNO Conditional BrUno					

Exchangeability and Bayesian computations

A stochastic process $x_{1}, x_{2}, x_{3} \ldots$ is exchangeable if for all n and all permutations π : $p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$
De Finetti's theorem says that every exchangeable process is a mixture of i.i.d. processes:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\int p(\theta) \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) d \theta
$$

where θ is some parameter conditioned on which the data is i.i.d.

$$
\begin{aligned}
& \begin{array}{c}
\text { with } \\
\text { compound } \\
\text { symmetric } \\
\text { covariance }
\end{array} \\
& x_{1}, \ldots, x_{n} \sim \mathcal{N}_{n}(\mathbf{0}, \boldsymbol{\Sigma})\left[\begin{array}{cccc}
v & \rho & \rho & \ldots
\end{array}\right) \\
& \rho \\
& \rho
\end{aligned} \rho \rho \ldots .
$$

De Finetti's theorem in terms of predictive distributions:

$$
p\left(x_{n} \mid x_{1: n-1}\right)=\int \underbrace{p\left(x_{n} \mid \theta\right)}_{\text {likelihood }} \underbrace{p\left(\theta \mid x_{1: n}\right)}_{\text {posterior }} d \theta
$$

This gives two ways for defining models of exchangeable sequences:

1) via explicit Bayesian modelling
2) via exchangeable processes \rightarrow BRUNO

For conditional real-valued processes, where $x_{1}, x_{2}, x_{3} \ldots$ is associated with h_{1}, h_{2}, h_{3} de Finetti's theorem is not proven.

The decomposition of the form $p\left(x_{1: n} \mid h_{1: n}\right)=\int p(\theta) \prod_{i=1}^{n} p\left(x_{i} \mid h_{i}, \theta\right) d \theta$ exists if the following conditions hold:

1. $p\left(x_{1}, \ldots, x_{n} \mid h_{1}, \ldots, h_{n}\right)=p\left(x_{\pi(1)}, \ldots, x_{\pi(n)} \mid h_{\pi(1)}, \ldots, h_{\pi(n)}\right)$
2. $\quad p\left(x_{1: m} \mid h_{1: m}\right)=\int p\left(x_{1: n} \mid h_{1: n}\right) d x_{m+1: n}$ for $1 \leq m<n$.

Conditional BRUNO

A1: dimensions $\left\{z^{d}\right\}_{d=1, \ldots, D}$ are independent, so $p(z)=\prod_{d=1}^{D} p\left(z^{d}\right)$
A2: for each dimension d, we assume that $\left(z_{1}^{d}, \ldots z_{n}^{d}\right) \sim M V N_{n}\left(\mu^{d} \mathbf{1}, \boldsymbol{\Sigma}^{d}\right)$ mean $\mu^{d} \mathbf{1}$ is a $1 \times n$ vector filled with $\mu^{d} \in \mathbb{R}$ covariance $n \times n$ matrix Σ^{d} with $\Sigma_{i i}^{d}=v^{d}$ and $\Sigma_{i j, i \neq j}^{d}=\rho^{d}$ where $0 \leq \rho^{d}<v^{d}$

For a sequence $\left(\boldsymbol{x}_{1}, \boldsymbol{h}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{h}_{2}\right), \ldots\left(\boldsymbol{x}_{N}, \boldsymbol{h}_{N}\right)$ the model is trained to maximise $\mathcal{L}=\sum_{n=m+1}^{N} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{h}_{n}, \boldsymbol{x}_{1: m}, \boldsymbol{h}_{1: m}\right)$
with respect to Real NVP parameters and Σ parameters for every latent dimension.

Real NVP*

- f is bijective
forward $\boldsymbol{z}=f(\boldsymbol{x})$ and inverse $\boldsymbol{x}=f^{-1}(\boldsymbol{z})$ mappings are equally expensive - computing the Jacobian takes $\mathcal{O}(D)$

Coupling layer - the main building block of Real NVP:

scales and translates only half of the input dimensions at a time; \mathbf{s} and \mathbf{t} are deep neural nets

For a conditional Real NVP mapping $\boldsymbol{z}=f_{\boldsymbol{h}}(\boldsymbol{x})$, we can make \boldsymbol{s} and \boldsymbol{t} depend on \boldsymbol{h} by adding a bias computed from the features of \boldsymbol{h} to every layer inside \boldsymbol{s} and \boldsymbol{t}. Given a distribution $p(\boldsymbol{z})$, we can evaluate $p(\boldsymbol{x} \mid \boldsymbol{h})$ using the change of variables formula:

$$
p(\boldsymbol{x} \mid \boldsymbol{h})=p(\boldsymbol{z})\left|\operatorname{det}\left(\frac{\partial f_{\boldsymbol{h}}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right)\right|
$$

${ }^{\text {}}$ L. Dinh, J. Soh-Dickstein, and S. Bengio. Density estimation using Real NVP. In. ICLR'17

Exchangeable Gaussian processes

In a $\mathcal{G} \mathcal{P}$, where any finite collection $\left(z_{1}, \ldots z_{n}\right) \sim \operatorname{MVN} N_{n}(\mu \mathbf{1}, \boldsymbol{\Sigma})$ with a compound symmetric Σ, recurrent updates for the params of $p\left(z_{n+1} \mid z_{1: n}\right)=\mathcal{N}\left(\mu_{n+1}, v_{n+1}\right)$ are:

$$
\begin{array}{rlrl}
\mu_{n+1} & =\left(1-d_{n}\right) \mu_{n}+d_{n} z_{n} & \text { with } & \\
v_{n+1} & =\left(1-d_{n}\right) v_{n}+d_{n}(v-\rho) & & \mu_{1}=\rho(n-1) \\
\mu_{1} & =\mu, v_{1}=v
\end{array}
$$

$\mathcal{O}(n)$ runtime and $\mathcal{O}(1)$ memory complexity!

Experiments

Conditional BRUNO trained on ShapeNet chairs and airplanes

