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The robust accuracy dramatically decreases as we use a PGD attack with
multiple restarts:
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ractical. Training a neural network with VIB is similar to that of a VAE:
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Experiments: CIFAR-10

For CEB models, we also observe a decline in the robust accuracy as we
perform more restarts.
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The flatness of these landscapes explains why gradient-based attacks
with cross-entropy loss are not as effective.
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