A Closer Look at the Adversarial Robustness of Information Bottleneck Models

Iryna Korshunova^{*}, David Stutz^{*1}, Alexander A. Alemi², Olivia Wiles³, and Sven Gowal³

Information bottlenecks have been shown to significantly improve adversarial robustness of DNNs [1,2]

We run a number of diagnostics to validate these claims

Our analysis suggests that previous IB robustness results were influenced by gradient obfuscation

Information Bottlenecks

• The idea is to learn a compressed representation **Z** of an input **X** that is predictive of a target **Y** via the following **IB** objective:

$$\min_{Z} -I(Z,Y) + \beta I(Z,X)$$

• The Variational Information Bottleneck (VIB) [1] makes the IB objective practical. Training a neural network with VIB is similar to that of a VAE:

$$\min_{p(\mathbf{z}|\mathbf{x})} \mathbb{E}_{p(\mathbf{x},\mathbf{y})p(\mathbf{z}|\mathbf{x})} \Big[-\log q(\mathbf{y}|\mathbf{z}) + \beta \log \frac{p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z})} \Big]$$

• The Conditional Entropy Bottleneck (CEB) [2] gives a tighter bound on the IB objective:

$$\min_{p(\mathbf{z}|\mathbf{x})} \mathbb{E}_{p(\mathbf{x},\mathbf{y})p(\mathbf{z}|\mathbf{x})} \left[-\log q(\mathbf{y}|\mathbf{z}) + e^{-\rho} \log \frac{p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z}|\mathbf{y})} \right]$$

DeepMind

* Work done during an internship at DeepMind, ¹ Max Planck Institute for Informatics, ²Google Research, ³DeepMind

Experiments: MNIST

The robust accuracy of VIB models under a Fast Gradient Sign attack with different values of ϵ .

The results are similar to those of Alemi 2017, which show an improved robustness in comparison to undefended deterministic models

17.5 > 15.0 12.5 10.0 7.5

The robust accuracy dramatically decreases as we use a PGD attack with multiple restarts:

With enough random restarts, the robust accuracy goes to zero.

Toy Examples

decreasing as we do more restarts.

example from This Tsipras et al. (2019) motivates the use of IB models for adversarial robustness.

The following example illustrates a failure mode of VIB models:

 $p(x_1|y=1) = \mathcal{U}(0,10)$ $\mathcal{U}(0,1)$ w.p. 0.9 $p(x_2|y=1) =$ $\mathcal{U}(-1,0)$ w.p. 0.1 $p(x_1|y = -1) = \mathcal{U}(-10, 0)$ $\mathcal{U}(-1,0)$ w.p. 0.9 $p(x_2|y=-1) =$ $\mathcal{U}(0,1)$ w.p. 0.1

Experiments: CIFAR-10

For CEB models, we also observe a decline in the robust accuracy as we perform more restarts.

Under our strongest attack, an ensemble of AutoAttack [3] and Multi-targeted [4], the performance of CEB models greatly varies across random seeds.

Loss Surfaces of CEB Models

The flatness of these landscapes explains why gradient-based attacks with cross-entropy loss are not as effective.

References

[1] A. Alemi et al., "Deep variational information bottleneck," 2017

[2] I. Fischer and A. Alemi, "CEB improves model robustness," 2020

[3] F. Croce and M. Hein, "Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks," 2020 [4] S. Gowal et al., "An alternative surrogate loss for PGD-based adversarial testing," 2019

[5] D. Tsipras et al., "Robustness may be at odds with accuracy," 2019