BRUNO: A Deep Recurrent Model for Exchangeable Data

Iryna Korshunova1 Jonas Degrave1 Ferenc Huszár2 Yarin Gal2 Arthur Gretton4 Joni Dambre1
1Ghent University 2University of Oxford 3Equal contribution 4Now at DeepMind

Overview

BRUNO is a versatile meta-learning model that combines the expressiveness of deep neural networks with the data-efficiency of GPs to model exchangeable sequences of high-dimensional, complex observations like images.

BRUNO is exchangeable by construction, meaning that its joint distribution $p(x_1, \ldots, x_n)$ is permutation-invariant. As a consequence, BRUNO carries out an exact Bayesian inference, albeit implicitly.

BRUNO enjoys some properties that are desirable in practice:
- Predictive distribution $p(x_{n+1}|x_1, \ldots, x_n)$ is fast to evaluate
- $p(x_1|x_{n+1})$ is easy to sample from
- $p(x_{n+1}|x_1, \ldots, x_n)$ is differentiable with respect to the model parameters
- Can be trained efficiently in an RNN-like fashion

Exchangeability and Bayesian computations

A stochastic process x_1, x_2, \ldots is exchangeable if for all n and all permutations π:

$$p(x_1, \ldots, x_n) = p(x_{\pi(1)}, \ldots, x_{\pi(n)})$$

De Finetti’s theorem says that every exchangeable process is a mixture of i.i.d. processes:

$$p(x_1, \ldots, x_n) = \int p(\theta) \prod p(x_n|\theta) d\theta,$$

where θ is some parameter conditioned on which the data is i.i.d.

De Finetti’s theorem in terms of predictive distributions:

$$p(x_n|x_{n+1}) = \int p(x_n|\theta) p(f(x_n)|\theta) d\theta$$

This gives two ways for defining models of exchangeable sequences:
1) via explicit Bayesian modelling, e.g. like in the neural statistician [1]
2) via exchangeable processes, e.g. BRUNO

Exchangeability and meta-learning

Exchangeability is to meta-learning as convolutions are to vision.

Experiments

Fashion MNIST generation

OMNIGLOT few-shot generation

OMNIGLOT few-shot classification

Online set anomaly detection

Extra: conditional BRUNO

BRUNO can be easily extended to handle exchangeable sequences where every x_i is associated with a vector of labels or tags h_i. Here, we model $p(x_1, h_1, x_2, h_2, \ldots)$.

ShapeNet 1-shot BRUNO samples conditioned on the camera angle

Bibliography