BRUNO: A Deep Recurrent Model for Exchangeable Data
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Overview

BRUNO is a versatile meta-learning model that combines the expressiveness of
deep neural networks with the data-efficiency of GPs to model exchangeable
sequences of high-dimensional, complex observations like images.

BRUNO is exchangeable by construction, meaning that its joint distribution
p(xi,...,x,) is permutation-invariant. As a consequence, BRUNO carries out an
exact Bayesian inference, albeit implicitly.

BRUNO enjoys some properties that are desirable in practice:
v’ predictive distribution p(x,|x;.,_1) is fast to evaluate
V' p(xp|x1.n—1) is easy to sample from

V' p(xp|x1.n—1) is differentiable with respect to the model parameters

v' can be trained efficiently in an RNN-like fashion

Exchangeability and Bayesian computations

P(Xl, s 7Xn) — P (Xﬂ'(l)? s 7X7T(n>)
De Finetti's theorem says that every exchangeable process is a mixture of i.i.d.
processes:
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where 6 is some parameter conditioned on which the data is i.i.d.

with Vpp...p
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covariance ppp... v
X1, ...X, are i.i.d. with x; ~ N(6, v — p) conditioned on 6 ~ N(0, p)

De Finetti's theorem in terms of predictive distributions:
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This gives two ways for defining models of exchangeable sequences:

1) via explicit Bayesian modelling, e.g. like in the neural statistician [1]

2) via exchangeable processes, e.g. BRUNO

Exchangeability and meta-learning

Exchangeability is to meta-learning as convolutions are to vision.
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A stochastic process x;, X0, X3 . .. is exchangeable if for all n and all permutations :
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BRUNO: Bayesian RecUrrent Neural mQOdel Experiments

Fashion MNIST generation
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A2: for each dimension d, we assume that (z9,...z%) ~ MVT,(v9, ul, K9) SEAMS B AERE LRSI D A A b 3
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OMNIGLOT few-shot classification

5-way 20-way

Real NVP [2] Model 1-shot 5-shot 1-shot 5-shot
Baseline Classifier [4] 80.0 95.0 695 89.1
. Matching Nets [4 08.1 989 93.8 985
X+ Z with X = RP and Z — RP atching Nets [4]
BRUNO 86.3 956 69.2 87.7

- f is bijective
- forward z = f(x) and inverse x = f(z) mappings are equally expensive
- computing the Jacobian takes O(D)

BRUNO (discriminative fine-tuning) 97.1 994 913 978

Online set anomaly detection
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Real NVP assumes a simple distribution for p(z),
so we can use the change of variables formula to evaluate p(x):

Of (x)
0x

p(x) = p(z) |det

Coupling layer - the main building block of Real NVP:

scales and translates Extra: conditional BRUNO
only half of the input
dimensions at a time

y@tP = xP @ exp(s(xh?)) + t(x"9) BRUNO can be easily extended to handle exchangeable sequences where every x; is

associated with a vector of labels or tags h;. Here, we model p(x,|h,, x;.,_1, h.,_1).

Exchangeable Gaussian and Student-t processes ShapeNet 1-shot BRUNO samples conditioned on the camera angle
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In a G'P, where any finite collection (z,...z,) ~ MVN,(u1,3) with a compound
symmetric X2, recurrent updates for the params of p(z,.1|zi.,) = N (ttni1, Vay1) are:

tn+1 = (1 — dn),un + dpz, with d, = ’O/V+P(”_1)
Vol = (1 — dn)Vn T dn(v — p) p1 = [, Vi =V

O(n) runtime and O(1) memory complexity! Bibliography

TP [3] is a generalisation of a GP that can be derived by placing an inverse Wishart
process prior on the covariance of a GP. 7 'Ps tend to be more robust when training
BRUNO at negligible additional costs compared to GPs.
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