sequences of high-dimensional, complex observations like images.

exact Bayesian inference, albeit implicitly.

BRUNO enjoys some properties that are desirable in practice:

Exchangeability and Bayesian computations

$$\boldsymbol{p}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)=\boldsymbol{p}\left(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(n)}\right)$$

processes:

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \int p(\theta) \prod_{i=1}^n p(\mathbf{x}_i|\theta) d\theta,$$

where θ is some parameter conditioned on which the data is i.i.d.

De Finetti's theorem in terms of **predictive distributions**:

This gives two ways for defining models of exchangeable sequences:

2) via exchangeable processes, e.g. BRUNO

Exchangeability and meta-learning

BRUNO: A Deep Recurrent Model for Exchangeable Data Iryna Korshunova^{1 \heartsuit} Jonas Degrave^{1 \heartsuit *} Ferenc Huszár² Yarin Gal³ Arthur Gretton^{4 \triangle} Joni Dambre^{1 \triangle}

 $^{\heartsuit \triangle}$ Equal contribution ^{*}Now at DeepMind

¹Ghent University ²Twitter ³University of Oxford ⁴Gatsby Unit, University College London

$$\left(\frac{\mathbf{x}}{\mathbf{x}}\right)$$

$$d_n = \rho / \mathbf{v} + \rho(n-1)$$

 $\mu_1 = \mu, \ \mathbf{v}_1 = \mathbf{v}$

Experiments

OMNIGLOT few-shot generation

	Ж	fih V c	ж :	ж <i>г</i>	* %	ж	* *	(π	Ж	ж : ~	* *	(76) 	* >	۲ ۲	Кa	(Ж	-	ار	र न	54	٦,	τ.	र र	. τ	ਨ	£	र र	र न	- 7	无	τŻ	ττ	٦.
<u>د</u> ا 	35	%	\mathcal{K}	₹ }	s, 34.	ĽF	শ্ব স্	(=	\mathcal{F}_{i}	R	7 8 9		π	k G	κ	\$ \$	11	74-	म	- 0-	1	5	°. Q		R	T_	4		-	2.	τę. ζ	4; IC	4
Ť	3	μ¢.	Ř	チ	ця, Хи	×	计	ાસ	1	不了	5 2	1	١	H B	1 2	₿₹	\mathbf{S}		N N	শ প	•C	5	a 7	ςæ	Ł	Ц	1. (ς z	ন	72	Z	$\overline{\mathcal{F}}$	尺
ų	¥	Ŧ	Ш.	? - 7 5	*) ×	-R	H 8		*	jų 5	£. 9	e ve	τł	3	\$ 7	8	\mathcal{T}^{i}	R	যা ন	- 5	3		えス	ζ	\mathcal{I}	Ú,	天	ΞG	Z	Я	Т,	᠇᠇	đ.
Ъ	沃	F.	¥	雵 (के ह	ĥ	X 8	t X	Ж	36	r 'A	\$	ŝ	र् २	2	8	む	k	8	C 70	70	5	ττ	: וב	М	Ð	١Į	C 1	L,	χ	÷Fī	ር ድ	冗
	Ц	Ч.	ц	цι	Ļц	Ļ,	цĻ	Ц	ц	Ц	ĻЦ	ļЦ	Ц	Ļμ	ι, ι	りり		Э	<i>د</i> ، (ر) (?	С	30	(n (n) (^)	С	m	() (y C	\sim	JM	දා (300	\mathcal{C}
Ц	4	0 į	0	ŝ	4 h	Ц.	NG G	لع	£٩	2	υ. L	n, Li	3	<u>n</u> (Ъ d	¢.	ю	С	η	5	t	Μ.	7	(\land)	\sim	\mathcal{E}	\mathcal{O} :	7.	\mathbb{C}	3	\mathcal{D}	σ σ	ŝ
c	щ	\mathbf{z}	പ	UL ^t	Э×	d I	பி	. el	ъ	Q	1. <i>1</i> 2	14	, id (ц н	ξt	(14	5-2	чЭ	с с	<u>, 70</u>	5	171	γM	in	Ъ	D	\mathbb{C}	л Г.	5 19	3	\mathcal{O}	C t	\mathfrak{O}
کی	\mathbf{q}	e,	L.	ব	55	3	ЧЧ	J.	Ċ,	$b_{j} = c$	4	4	Ц	بع ع) 4	5 12	と	r f 1	5 "	$\sim 10^{-1}$	ور ا	3	ľ,		5	σ_1	ŝ	юÐ	C	\overline{r}	で	n (1	33
£	5	ф	ĹĮ	ŝ	4 9	Ť	v, e	4	61	Ę.)	ц ~	J J	Ч	ર્દ) L	E P	\geq	s)	n c	2	ഠ	cy (77		è à	Cυ	5 ($> \leq$		$\langle P' \rangle$	ŝ	ก ท	ち

Model

Baseline Classifier [4] Matching Nets [4] BRUNO **BRUNO** (discriminativ

Extra: conditional BRUNO

BRUNO can be easily extended to handle exchangeable sequences where every x_i is associated with a vector of labels or tags h_i . Here, we model $p(\mathbf{x}_n | \mathbf{h}_n, \mathbf{x}_{1:n-1}, \mathbf{h}_{1:n-1})$.

ShapeNet 1-shot BRUNO samples conditioned on the camera angle

1						H	周	H
les	-	1	H	H	1	P	E.	
amp	B		-	1			D	
ũ		1	H	H	H	M	H	

Bibliography

[1] H. Edwards and A. Storkey. Towards a neural statistician. In ICLR'17. [3] A. Shah, A. G. Wilson, and Z. Ghahramani. Student-t processes as alternatives to gaussian processes. In AISTATS'14. [4] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot learning. In *NIPS'16*.

Fashion MNIST generation

kakas kakas kakas nekas setek kasas kakas setek setek sasta kas kakis estas satis akas kakas kakis estas satis akas kakas

OMNIGLOT few-shot classification

	5 -w	vay	20-way				
	1-shot !	ō-shot	1-shot	5-shot			
	80.0	95.0	69.5	89.1			
	98.1	98.9	93.8	98.5			
	86.3	95.6	69.2	87.7			
ve fine-tuning)	97.1	99.4	91.3	97.8			

Online set anomaly detection