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BRUNO: A Deep Recurrent Model for 
Exchangeable Data
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A stochastic process              is exchangeable if for all 
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Exchangeability. IID example 
A stochastic process              is exchangeable if for all 
n and all permutations π:

IID random variables 
are exchangeable: 
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Exchangeability and Bayesian computations
De Finetti’s theorem says that every exchangeable process is 
a mixture of i.i.d. processes:

where θ is some parameter conditioned on which the data is 
i.i.d.



De Finetti’s theorem. Example
Assume we have a process, where   

with an exchangeable covariance structure: 
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De Finetti’s theorem. Why? 

Bayesian

successive coin tosses

If we assume               are iid:

=> results of the first n−1 tosses do 
not change the uncertainty about the 
result of n-th tosses

BRUNO



Exchangeability and Bayesian computations #2

        

       rewrite in terms of predictive distributions 
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Exchangeability and Bayesian computations #3

Gives 2 ways for defining models of exchangeable sequences:

1. via explicit Bayesian modelling => VAE-based models

2. via exchangeable processes => BRUNO   

        



A killer application: meta-learning
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Meta-learning models. Taxonomy

                                                                                  O. Vinyals Meta-learning symposium talk @ NIPS’17

Siamese Neural Networks
Matching Networks 
Relation Network
Prototypical Networks

Memory-Augmented Neural Network
Neural Processes
BRUNO

LSTM meta-learner
Model-agnostic meta-learning (MAML)



1. Order-invariance
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2.  Correlation   

Exchangeability and meta-learning

         D1                    D2                    D3
 {D1,D2,...,DK} are i.i.d.         {x1,x2,...,xn} are correlated 

 x1      x2      x3      x4 



 Simple                                  Difficult
 x1      x2      x3      x4 



 Simple                                  Difficult
 x1      x2      x3      x4 
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Exchangeability 
A stochastic process              is exchangeable if for all 
n and all permutations π:

Defines an 
exchangeable 
Gaussian 
process



Gaussian processes



Exchangeable Gaussian processes



Predictive distribution? 
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Powerful 
bijective 
transformation



 Real NVP
- bijective 

- forward and the inverse mappings are equally expensive

- computing the log determinant of the Jacobian is O(D) 
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Real NVP. Change of Variables
Likelihood evaluation: 



 Real NVP’s coupling layer

Jacobian: 



Convolutional Real NVP
Schemes to partition 
the dimensions when 
using convolutions 

Samples from Real NVP 
trained on CelebA and LSUN 



 BRUNO

* Latent dimensions are independent, so

* For every latent dimension d:                            with an exchangeable Kd
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 Training BRUNO

Trainable 
parameters

Classical RNN objective:



Experiments: Fashion MNIST
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Experiments: Fashion MNIST
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Experiments: OMNIGLOT few-shot Generation
Omniglot: 1623 different handwritten characters from 50 different alphabets. 
Each of the characters was drawn by 20 different people. 



Experiments: OMNIGLOT few-shot classification

*O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching Networks for One Shot Learning. NIPS’16episode
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Experiments: OMNIGLOT few-shot classification

*O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching Networks for One Shot Learning. NIPS’16episode
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Can we model                    ? 

Eslami et al. Neural scene representation and rendering. Science’18
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Experiments: ShapeNet chairs & airplanes
ground truth
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Experiments: ShapeNet chairs & airplanes
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Experiments: ShapeNet chairs & airplanes
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Conclusion
BRUNO = expressiveness of DNNs + data-efficiency of GPs

A meta-learning exchangeable model with 

- exact likelihoods
- fast sampling and inference
- no retraining or changes to the architecture at test time
- recurrent formulation


