BRUNO: A Deep Recurrent Model for Exchangeable Data

Iryna Korshunova

Ghent University (visiting Gatsby Unit)

Ferenc Huszár

Twitter

Arthur Gretton

Gatsby Unit, UCL

Jonas Degrave

Ghent University (now at DeepMind)

Yarin Gal

University of Oxford

Joni Dambre

Ghent University

$$p(x_1,\ldots,x_n)=p\left(x_{\pi(1)},\ldots,x_{\pi(n)}\right)$$

$$p(x_1,\ldots,x_n)=p\left(x_{\pi(1)},\ldots,x_{\pi(n)}\right)$$

$$p(x_1,\ldots,x_n)=p\left(x_{\pi(1)},\ldots,x_{\pi(n)}\right)$$

EXCHANGEABILITY. IID EXAMPLE

A stochastic process $x_1, x_2, x_3...$ is exchangeable if for all n and all permutations π :

$$p(x_1,\ldots,x_n)=p\left(x_{\pi(1)},\ldots,x_{\pi(n)}\right)$$

IID random variables are exchangeable:

$$p(x_1,\ldots,x_n) = \prod_{i=1}^n p(x_i)$$

EXCHANGEABILITY. NON-IID EXAMPLE

$$p(x_1,\ldots,x_n) = \mathcal{N}_n(\mu, \mathbf{\Sigma})$$

$$\mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \quad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

exchangeable
$$v = 1$$
 $\rho = 0.7$

v=1 $\rho=0$

De Finetti's theorem says that every exchangeable process is a mixture of i.i.d. processes:

$$p(x_1, \dots, x_n) = \int p(\theta) \prod_{i=1}^n p(x_i|\theta) d\theta$$

where θ is some parameter conditioned on which the data is i.i.d.

DE FINETTI'S THEOREM. EXAMPLE

Assume we have a process, where $x_1, \ldots, x_n \sim \mathcal{N}_n(0, \Sigma)$

with an exchangeable covariance structure:

$$\boldsymbol{\Sigma} = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho <}$$

v

DE FINETTI'S THEOREM. EXAMPLE

Assume we have a process, where $x_1, \ldots, x_n \sim \mathcal{N}_n(0, \boldsymbol{\Sigma})$

with an exchangeable covariance structure:

$$\boldsymbol{\Sigma} = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

Then $x_1, \ldots x_n$ are i.i.d

with $x_i \sim \mathcal{N}(\theta, v - \rho)$ conditionally on $\theta ~ \sim \mathcal{N}(0, \rho)$

DE FINETTI'S THEOREM. WHY?

 x_1, x_2, x_3, \ldots successive coin tosses

DE FINETTI'S THEOREM. WHY?

 x_1, x_2, x_3, \ldots successive coin tosses

If we assume
$$x_1, x_2, x_3, \ldots$$
 are iid:

Bayesian

DE FINETTI'S THEOREM. WHY?

BRUNO Bayesian

 x_1, x_2, x_3, \ldots successive coin tosses

If we assume
$$x_1, x_2, x_3, \ldots$$
 are iid: $p(x_n | x_{1:n-1}) = p(x_n)$

=> results of the first *n*-1 tosses do not change the uncertainty about the result of *n*-th tosses

$$p(x_1, \dots, x_n) = \int p(\theta) \prod_{i=1}^n p(x_i|\theta) d\theta$$

rewrite in terms of predictive distributions

$$p(x_n|x_{1:n-1}) = \int \underbrace{p(x_n|\theta)}_{\text{likelihood}} \underbrace{p(\theta|x_{1:n})}_{\text{posterior}} d\theta$$

$$p(x_n|x_{1:n-1}) = \int \underbrace{p(x_n|\theta)}_{\text{likelihood}} \underbrace{p(\theta|x_{1:n})}_{\text{posterior}} d\theta$$

Gives 2 ways for defining models of exchangeable sequences

$$p(x_n|x_{1:n-1}) = \int \underbrace{p(x_n|\theta)}_{\text{likelihood}} \underbrace{p(\theta|x_{1:n})}_{\text{posterior}} d\theta$$

Gives 2 ways for defining models of exchangeable sequences:

1. via explicit Bayesian modelling => VAE-based models

$$p(x_n|x_{1:n-1}) = \int \underbrace{p(x_n|\theta)}_{\text{likelihood}} \underbrace{p(\theta|x_{1:n})}_{\text{posterior}} d\theta$$

Gives 2 ways for defining models of exchangeable sequences:

- 1. via explicit Bayesian modelling => VAE-based models
- 2. via exchangeable processes => BRUNO

A KILLER APPLICATION: META-LEARNING

dogs

otters

S~L

S~L

META-LEARNING MODELS. TAXONOMY

Model Based

 $p_{\theta}(y|x,S) = f_{\theta}(x,S)$

Memory-Augmented Neural Network Neural Processes BRUNO

META-LEARNING MODELS. TAXONOMY

Model Based

Metric Based

$$p_{\theta}(y|x,S) = f_{\theta}(x,S)$$

Memory-Augmented Neural Network Neural Processes BRUNO

$$p_{\theta}(y|x,S) = \sum_{(x_i,y_i) \in S} k(x_i,x)y_i$$

Siamese Neural Networks Matching Networks Relation Network Prototypical Networks

META-LEARNING MODELS. TAXONOMY

Model Based

 $p_{\theta}(y|x,S) = f_{\theta}(x,S)$

Memory-Augmented Neural Network Neural Processes BRUNO

$$p_{\theta}(y|x,S) = \sum_{(x_i,y_i) \in S} k(x_i,x)y_i$$

Siamese Neural Networks Matching Networks Relation Network Prototypical Networks

Optimization Based

 $p_{\theta}(y|x,S) = f_{\theta(S)}(x,S)$ $\theta(S) = g_{\phi}(\theta_0, \{\nabla_{\theta_0} L(x_i,y_i)\}_{(x_i,y_i \in S)})$

LSTM meta-learner Model-agnostic meta-learning (MAML)

O. Vinyals Meta-learning symposium talk @ NIPS'17

EXCHANGEABILITY AND META-LEARNING

Order-invariance 1.

EXCHANGEABILITY AND META-LEARNING

1. Order-invariance

2. Correlation

SIMPLE

$$p(x_1,\ldots,x_n) = \mathcal{N}_n(\mu,\mathbf{\Sigma})$$

$$\mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \quad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

DIFFICULT

$$p(x_1,\ldots,x_n) = ?$$

DIFFICULT

bijection

$$p(x_1,\ldots,x_n) = \mathcal{N}_n(\mu,\mathbf{\Sigma})$$

$$\mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \quad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

$$p(x_1,\ldots,x_n) = ?$$

BRUNO: BAYESIAN RECURRENT NEURAL MODEL

BRUNO: BAYESIAN RECURRENT NEURAL MODEL

$$p(x_1,\ldots,x_n) = p\left(x_{\pi(1)},\ldots,x_{\pi(n)}\right)$$

$$p(x_1,\ldots,x_n) = p\left(x_{\pi(1)},\ldots,x_{\pi(n)}\right)$$

$$p(x_1, \dots, x_n) = \mathcal{N}_n(\mu, \Sigma) \qquad v = 1 \quad \rho = 0.7$$

$$\mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \quad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

A stochastic process $x_1, x_2, x_3...$ is exchangeable if for all n and all permutations π :

$$p(x_1,\ldots,x_n) = p\left(x_{\pi(1)},\ldots,x_{\pi(n)}\right)$$

$$p(x_1, \dots, x_n) = \mathcal{N}_n(\mu, \Sigma)$$

$$\mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

$$v = 1 \quad \rho = 0.7$$

Defines an exchangeable Gaussian process

GAUSSIAN PROCESSES

Definition. f is a Gaussian process on \mathcal{X} with

```
mean function \Phi: \mathcal{X} \mapsto \mathbb{R}
```

kernel function $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$

if any finite collection of function values have a joint multivariate Gaussian distribution, i.e. $(f(x_1), ..., f(x_n)) \sim \mathcal{N}_n(\mu, \Sigma)$ where

 $\mu \in \mathbb{R}^n$ with $\mu_i = \Phi(x_i)$

 $\Sigma \in \Pi(n)$ with $\Sigma_{ij} = k(x_i, x_j)$

Definition. f is a Gaussian process on \mathcal{X} with

```
mean function \Phi: \mathcal{X} \mapsto \mathbb{R}
```

kernel function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$

if any finite collection of function values have a joint multivariate Gaussian distribution, i.e. $(f(x_1), ..., f(x_n)) \sim \mathcal{N}_n(\mu, \Sigma)$ where

$$\mu \in \mathbb{R}^n$$
 with $\mu_i = \Phi(x_i)$
 $\Sigma \in \Pi(n)$ with $\Sigma_{ij} = k(x_i, x_j)$

 $\mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \quad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$

$$(z_1, \dots z_n) \sim \mathcal{N}_n(\mu, \Sigma) \qquad \mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \qquad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

Predictive distribution?

$$p(z_{n+1}|z_{1:n}) = \mathcal{N}(\mu_{n+1}, v_{n+1})$$

$$(z_1, \dots z_n) \sim \mathcal{N}_n(\mu, \Sigma) \qquad \mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \qquad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

Predictive distribution?

$$p(z_{n+1}|z_{1:n}) = \mathcal{N}(\mu_{n+1}, v_{n+1})$$

$$(z_1, \dots z_n) \sim \mathcal{N}_n(\mu, \Sigma) \qquad \mu = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} \qquad \Sigma = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

Predictive distribution?

$$p(z_{n+1}|z_{1:n}) = \mathcal{N}(\mu_{n+1}, v_{n+1})$$

$$\mu_{n+1} = (1 - d_n)\mu_n + d_n z_n$$

$$v_{n+1} = (1 - d_n)v_n + d_n(v - \rho)$$

$$d_n = \frac{\rho}{v + \rho(n - 1)}$$

$$\mu_1 = \mu, \quad v_1 = v$$

REAL NVP

 $f: \mathcal{X} \mapsto \mathcal{Z} \text{ with } \mathcal{X} = \mathbb{R}^D$

- bijective
- forward and the inverse mappings are equally expensive
- computing the log determinant of the Jacobian is O(D)

REAL NVP

 $f: \mathcal{X} \mapsto \mathcal{Z} \text{ with } \mathcal{X} = \mathbb{R}^D$

- bijective
- forward and the inverse mappings are equally expensive
- computing the log determinant of the Jacobian is O(D)

REAL NVP. CHANGE OF VARIABLES

Likelihood evaluation:

$$p(\mathbf{x}) = p(\mathbf{z}) \left| \det \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

REAL NVP'S COUPLING LAYER

 $y_{1:d} = x_{1:d}$

$$y_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d})$$

(a) Forward propagation

(b) Inverse propagation

Jacobian:

$$\frac{\partial y}{\partial x^{T}} = \begin{bmatrix} \mathbb{I}_{d} & 0\\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^{T}} & \operatorname{diag}\left(\exp\left[s\left(x_{1:d}\right)\right]\right) \end{bmatrix}$$

CONVOLUTIONAL REAL NVP

Schemes to partition the dimensions when using convolutions

Samples from Real NVP trained on CelebA and LSUN

BRUNO

 * Latent dimensions are independent, so $p(\mathbf{z}) = \prod_{d=1}^{D} p(z^d)$

* For every latent dimension d: $(z_1^d,\ldots,z_n^d)\sim\mathcal{N}_n(\mu^d\mathbf{1},\mathbf{K}^d)$ with an exchangeable \mathbf{K}^d

TRAINING BRUNO

TRAINING BRUNO

parameters

 $egin{aligned} \mathbf{K}^{d}_{ij} = egin{cases} v^{d}, & i = j \
ho^{d}, & i
eq j \end{aligned}$

Classical RNN objective:

$$\mathcal{L} = \sum_{n=0}^{N-1} \log p(\mathbf{x}_{n+1} | \mathbf{x}_{1:n})$$

Random samples from the dataset

Training sequences

Random samples from the dataset

Training sequences

BRUNO samples from the prior p(x)

LEARNING TO CORRELATE

28x28 inputs -> 784 latent dimensions with own variances and covariances:

$$\boldsymbol{\Sigma} = \begin{bmatrix} v \ \rho \ \rho \ \dots \ \rho \\ \rho \ v \ \rho \ \dots \ \rho \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \rho \ \rho \ \rho \ \dots \ v \end{bmatrix}_{0 \le \rho < v}$$

LEARNING TO CORRELATE

LEARNING TO CORRELATE

EXPERIMENTS: OMNIGLOT FEW-SHOT GENERATION

Omniglot: 1623 different handwritten characters from 50 different alphabets. Each of the characters was drawn by 20 different people.

	* = >	* *	* 7	*	* *	ж	Ж Я	K 🛪	×	ж	* 浙	Ж	ж	Ж		11	τŢ	1 7	1	স	ন	न	ন	र न	ス	ন	স	27	িব	N	А	স ব্
6)	F5 \$5	* *	Xr	, IL	光法	¥,	大	R 75	ġ,	78 :	木	(ac	R	兆		- 7	ta	1	19	5	শ	q	7	रत	Ţ	잣	ন	7 2	5 F	7	R	ন্দ স
F	王军	刑 第	*	*	王生	34	古石	1 第	¥	1	5 9	E B	A.	秀	2	5. 1	3	1	n h	3	ন	ব	И	3 10	7	μ	নন	\$ 5	57 2	13	নি	TZT
40	* *	南方	703	E.	**	14	* *	₽Æ.	œ	96	t ð	3	R	Ľ		0	* >	7 7	K	1,2	12	R	1.	AA	à	٦	त	7 7	N IY	7	N	R N
0	法司	長具	00 \$	E.	XE	*	* ?	6 X	Ĥ	\$ 1	出版	*	st;	۹		2	3 'J	- 7	77	1	· 19]	Þ7	Ч	ने न	7	-4	3	۳(ç	ন	d.	5	E. H
	بظل عد	цц	цц	- 44 -	шц	щ.	41	ιш	Ŧ	11.1	ц	. ц	-	11.		<	30	3 (2)) (?	c	3	3	3	ი ო	3	3	30	90	JW	(C)	3	с С С
30	in 12.	ग म	LuL	1.	is Li	11	ے ہے	- 14	فك	21.2	د -	4 14	ш	4		ю,	0 5	2 7	ា	t	3	5	57 1	10	3	\mathcal{D}	ス	20) (7	3	Ρj	m un
ş	ъл.	υц	44	4	171	. Ц.	41	مر ا	ш.	-4	1 1	ιL	Ľ.	Ц		· ·	30	50	70	5	17	D'	mi	1 to	×D	Ģ	0	15 1	5 0	61	t	0 0
Ð	120.	ند در	થ મ	11	24	1	24 1	4 AL	11	сь ;	+4	- 1-	. 44	4	5	11	11	5	N C	e1	3	3	5) (75	শ	6	n t	-	7 6	5	ത	CT 85
25	- اط مليم	کا لہ	μı	Ц	<u>ц</u>	G	<u>بر</u> ده	14	1.	1 24	11	22	4	5)r	/ 0	.0	0	4	J	5	C (P C	cn.	3	0 <	50	5 m	50	С	っち

EXPERIMENTS: OMNIGLOT FEW-SHOT CLASSIFICATION

Madal	5	-way	20-way				
WIUUEI	1-shot	5-shot	1-shot	5-shot			
BASELINE CLASSIFIER* Matching Nets*	80.0 98.1	95.0 98.9	69.5 93.8	89.1 98.5			
BRUNO	86.3	95.6	69.2	87.7			
BRUNO (discriminative fine-tuning)	97.1	99.4	91.3	97.8			

n-shot

2 X

Test time max $p(\mathbf{x}|\text{cat}_{1:4})$ $p(\mathbf{x}|\text{bird}_{1:4})$ $p(\mathbf{x}|\text{flower}_{1:4})$ $p(\mathbf{x}|\text{bike}_{1:4})$

*O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching Networks for One Shot Learning. NIPS'16

flowers

cats

birds

k-way

EXPERIMENTS: OMNIGLOT FEW-SHOT CLASSIFICATION

Modol	5	-way	20-way			
WIOUEI	1-shot	5-shot	1-shot	5-shot		
BASELINE CLASSIFIER* MATCHING NETS*	80.0 98.1	95.0 98.9	69.5 93.8	89.1 98.5		
BRUNO	86.3	95.6	69.2	87.7		
BRUNO (discriminative fine-tuning)	97.1	99.4	91.3	97.8		

n-shot

Train time softmax $p(\mathbf{x}|\text{cat}_{1:4})$ $p(\mathbf{x}|\text{bird}_{1:4})$ $p(\mathbf{x}|\text{flower}_{1:4})$ $p(\mathbf{x}|\text{bike}_{1:4})$

Fine-tune with a discriminative objective: $p(y = \operatorname{`bird'} | x, S)$

*O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching Networks for One Shot Learning. NIPS'16

- * Likelihoods $p(\mathbf{x}_{n+1}|\mathbf{x}_{1:n})$
- * Easy sampling from $p(\mathbf{x}_{n+1}|\mathbf{x}_{1:n})$

- * Likelihoods $p(\mathbf{x}_{n+1}|\mathbf{x}_{1:n})$
- * Easy sampling from $p(\mathbf{x}_{n+1}|\mathbf{x}_{1:n})$

CONDITIONAL BRUNO

Can we model $p(\mathbf{x}_{n+1}|\mathbf{h}_{n+1},\mathbf{x}_{1:n},\mathbf{h}_{1:n})$?

- * Likelihoods $p(\mathbf{x}_{n+1}|\mathbf{x}_{1:n})$
- * Easy sampling from $p(\mathbf{x}_{n+1}|\mathbf{x}_{1:n})$

CONDITIONAL BRUNO

Can we model $p(\mathbf{x}_{n+1}|\mathbf{h}_{n+1}, \mathbf{x}_{1:n}, \mathbf{h}_{1:n})$?

CONDITIONAL BRUNO

observation 🐳 🏷 🚔 🚔 🖤 🛒 🛒 🦪 🚔 🚔 🔂] ground truth X_1 DI samples I 🗇 🦛 🎓 👌 🛼 samples from $p(x|x_1, h=45^\circ)$ samples

CONCLUSION

BRUNO = expressiveness of DNNs + data-efficiency of GPs

A meta-learning exchangeable model with

- exact likelihoods
- fast sampling and inference
- no retraining or changes to the architecture at test time
- recurrent formulation