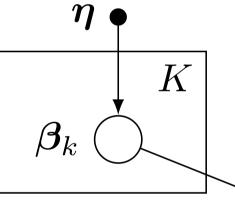
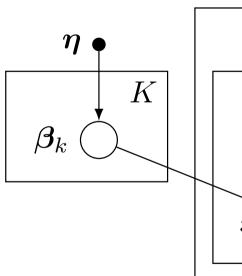
Overview **Alternative View of LDA** ► We specify a set of full conditional probabilities: $p(\boldsymbol{\pi}_d \mid \boldsymbol{k}_d) = \mathsf{Dir}\left(\boldsymbol{\pi}_d; \boldsymbol{\alpha} + \sum_n \boldsymbol{k}_{dn}\right)$ $p(\mathbf{k}_{dn} \mid \mathbf{x}_{dn}, \mathbf{\pi}_{d}, \mathbf{\theta}) = \mathbf{k}_{dn}^{\top} \operatorname{softmax}(\mathbf{g}(\mathbf{x}_{dn}, \mathbf{\theta}) + \ln \mathbf{\pi}_{d})$ $p(\theta \mid \mathbf{x}, \mathbf{k}) \propto \exp\left(r(\theta) + \sum_{dn} \mathbf{k}_{dn}^{\top} g(\mathbf{x}_{dn}, \theta)\right)$ can be supervised, semi-supervised or unsupervised
 \checkmark is scalable to large datasets ► That result in a valid joint distribution: \checkmark can benefit from the vast literature on LDA $p(\boldsymbol{\pi}, \boldsymbol{k}, \boldsymbol{\theta} \mid \boldsymbol{x}) \propto \exp\left((\boldsymbol{\alpha} - 1)^{\top} \sum_{d} \ln \boldsymbol{\pi}_{d} + \sum_{dn} \boldsymbol{k}_{dn}^{\top} \ln \boldsymbol{x}_{dn}^{\top} \right)$ \checkmark applicable to a wide range of problems with group structure present in the data ► Where LDA is a special case: Latent Dirichlet Allocation $g(\mathbf{x}_{dn}, \boldsymbol{\beta}) = \ln \boldsymbol{\beta} \, \mathbf{x}_{dn} \qquad r(\boldsymbol{\beta}) = (\boldsymbol{\eta} - 1)^{\top} \sum_{n=1}^{\infty} \mathbf{x}_{nn}$ *D* - number of documents in a corpus LDA: N_d - number of words in a document d $\alpha \bullet$ *K* - number of topics Logistic LDA V - number of words in the vocabulary D π_d ($\eta \bullet$ $g(\mathbf{x}_{dn}, \boldsymbol{\theta}) = \ln \operatorname{softmax} f(\mathbf{x}_{dn}, \boldsymbol{\theta}) \qquad r(\boldsymbol{\theta}, \mathbf{x}) = \gamma$ **x**_{dn} - n-th observed word in d-th document \boldsymbol{N} \boldsymbol{k}_{dn} - latent topic of word \boldsymbol{x}_{dn} $oldsymbol{eta}_k$ ($k_{dn} \bigcup$ Supervised Logistic L π_d - distribution over topics $p(\boldsymbol{\pi}_d \mid \boldsymbol{k}_d, \boldsymbol{c}_d) = \mathsf{Dir}\left(\boldsymbol{\pi}_d; \boldsymbol{\alpha} + \sum_n \boldsymbol{k}_{dn} + \lambda \boldsymbol{c}_d\right)$ β - $K \times V$ matrix of topic-word distributions $p(\mathbf{k}_{dn} \mid \mathbf{x}_{dn}, \mathbf{\pi}_{d}, \mathbf{\theta}) = \mathbf{k}_{dn}^{\top} \operatorname{softmax}(\mathbf{g}(\mathbf{x}_{dn}, \mathbf{\theta}) + \ln \mathbf{\pi}_{d})$ sLDA [1]:' 1. Draw topic proportions $\pi_d \sim \mathsf{Dir}(oldsymbol{lpha})$ $p(\theta \mid \mathbf{x}, \mathbf{k}) \propto \exp\left(r(\theta) + \sum_{dn} \mathbf{k}_{dn}^{\top} g(\mathbf{x}_{dn}, \theta)\right)$ $igoplus oldsymbol{\phi}, \sigma$ $\alpha iglet$ 2. Draw topic-word distributions $\beta_k \sim \text{Dir}(\eta)$ $p(\mathbf{c}_d \mid \mathbf{\pi}_d) = \operatorname{softmax}(\lambda \mathbf{c}_d^\top \ln \mathbf{\pi}_d)$ 3. For each word \mathbf{x}_{dn} : π_d ($\eta \bullet$ 3.1 Draw a topic assignment $\boldsymbol{k}_{dn} \sim \operatorname{Cat}(\boldsymbol{\pi}_d)$ K3.2 Draw a word $\mathbf{x}_{dn} \sim \operatorname{Cat}(\boldsymbol{\beta}^{\top} \boldsymbol{k}_{dn})$ **Training and Inference** κ_{dn} 4. In supervised LDA, draw a response variable: x_{dn} $\boldsymbol{c_d} \sim \mathcal{N}(\boldsymbol{\phi}^{\top}(\frac{1}{N_d}\sum_n \boldsymbol{k_{dn}}), \sigma^2)$ $\min D_{\mathsf{KL}} \left| q(\boldsymbol{\theta}) \left(\prod q(\boldsymbol{c}_d) \right) \left(\prod q(\boldsymbol{\pi}_d) \right) \left(\prod q(\boldsymbol{\pi}_d) \right) \right|$ Generative or Discriminative? [5] Coordinate descent updates for variational parame Generative $q(\boldsymbol{c}_d) = \boldsymbol{c}_d^\top \hat{\boldsymbol{p}}_d$ $\hat{oldsymbol{p}}_d = \mathsf{softmax}$ $p(\boldsymbol{c}, \boldsymbol{x}, \boldsymbol{\theta}) = p(\boldsymbol{x}, \boldsymbol{c} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$ $q(\boldsymbol{\pi}_d) = \mathsf{Dir}(\boldsymbol{\pi}_d; \hat{\boldsymbol{\alpha}}_d)$ $\hat{\boldsymbol{\alpha}}_d = \boldsymbol{\alpha} + \sum_{d \in \mathcal{A}_d} \hat{\boldsymbol{\alpha}}_{dd}$ $= p(\boldsymbol{c} \mid \boldsymbol{\pi}) p(\boldsymbol{x} \mid \boldsymbol{c}, \boldsymbol{\lambda}) p(\boldsymbol{\theta}), \text{ with } \boldsymbol{\theta} = \{\boldsymbol{\pi}, \boldsymbol{\lambda}\}$ $oldsymbol{q}(oldsymbol{k}_{dn})=oldsymbol{k}_{dn}^{ op}\hat{oldsymbol{p}}_{dn}$ $\hat{\boldsymbol{p}}_{dn} = \mathsf{softmax}$ e.g. LDA, naive Bayes classifier, linear discriminant analysis, GMM ► VI loss wrt. θ : Discriminative $\ell(\hat{\boldsymbol{\theta}}) pprox - \sum_{dn} (\hat{\boldsymbol{p}}_{dn} + \gamma \cdot \hat{\boldsymbol{r}}_{dn})^{\mathrm{T}}$ $p(\boldsymbol{c}, \boldsymbol{x}, \boldsymbol{\theta}) = p(\boldsymbol{c} \mid \boldsymbol{x}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) p(\boldsymbol{x})$ e.g. logistic regression, SVM, CRF \blacktriangleright Alternative empirical loss when c_d is observed: Logisitc LDA $\ell(\hat{\boldsymbol{\theta}}) = -\sum_{d} \boldsymbol{c}_{d}^{\top} \ln \hat{\boldsymbol{\rho}}$ $p(\boldsymbol{c}, \boldsymbol{x}, \boldsymbol{\theta}) = p(\boldsymbol{c}, \boldsymbol{\theta} \mid \boldsymbol{x})p(\boldsymbol{x})$

Logistic LDA is a novel discriminative variant of latent Dirichlet allocation (LDA) which is easy to apply to arbitrary inputs, such as images or text embeddings. Logistic LDA preserves LDA's extensibility and interpretability. In particular, it explicitly models item topics and group-level topic distributions, while integrating deep neural networks in a principled manner. Among other desirable properties, **logistic LDA**: Generative process:





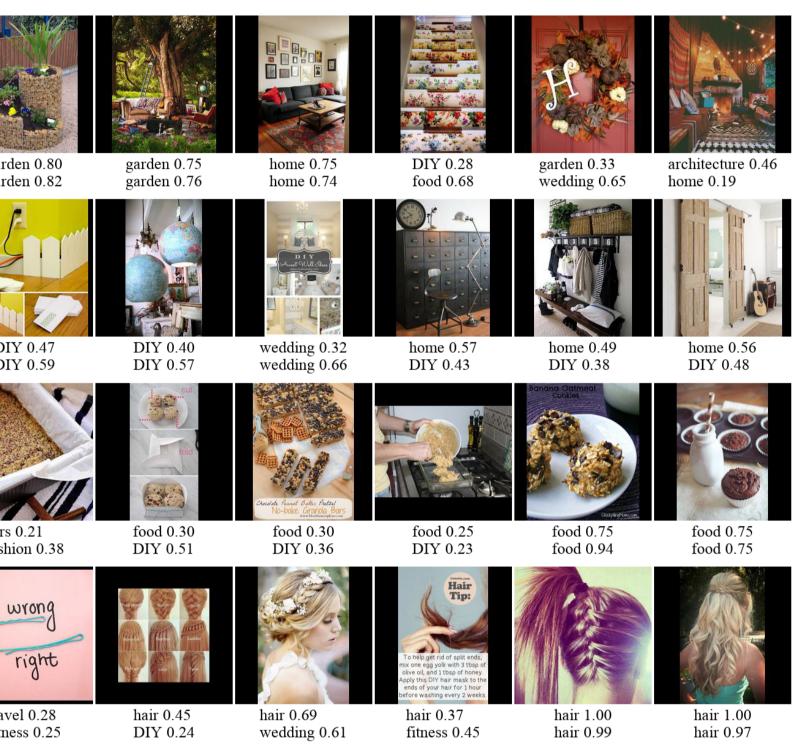
¹Ghent University ²Twitter *Work done at Twitter

Discriminative Topic Modeling with Logistic LDA Iryna Korshunova^{1*} Hanchen Xiong² Mateusz Fedoryszak² Lucas Theis²

$$\begin{aligned} \mathbf{x}_{dn} = \mathbf{y}_{dn} = \mathbf{y}_{dn} \\ \mathbf{x}_{dn} \\ \mathbf{y}_{dn} = \mathbf{y}_{dn} \\ \mathbf{x}_{dn} \\ \mathbf{y}_{dn} \\ \mathbf{$$

100K authors	Model	Author	Tweet
ere annotated	MLP (individual)	26.6%	32.4%
	MLP (majority)	35.0%	n/a
according to	LDA	33.1%	25.4%
	Logistic LDA	38.7%	35.6%

r Pinterest boards and pins



supervised topics

	Businginga & Galar MARRIE M XRN	

roups

t classification	1 accuracy	
LSTM [2]	SA-LSTM [2]	oh-2LSTMp [3]
82.0%	84.4%	86.5%
supervised to	pics	
ite, rocket, surface, programmer, electro	, ford, blke iblical, catholic, relig shipping, moon, lau onic, processing, data ninal, seriously, fight,	nch a, app, systems
5, 2008. 5, 2015. <i>Text Categorization Using LS</i>	STM for Region Embeddings.	ICML, 2016.

Text Categorization. PhD thesis, Universidade Tecnica de Lisboa, 2007.

[5] J.Lasserre, C. Bishop *Generative or Discriminative? Getting the Best of Both Worlds*. Bayesian Statistics 8, 2007