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Summary

The concept of a model as a predictive device is central to the

field of machine learning. Common tasks such as classification,

regression or generation, can be viewed as doing certain types

of predictions using models that learnt relevant properties of

the training data. To learn efficiently, the models must encode a

correct set of assumptions about the nature of the data. One of the

basic assumptions is whether the order of the inputs matters. For

example, order-dependence would be a suitable assumption for

text modelling since permuting the words might give sentences

a different meaning and so we want our model to capture this

change. On the other hand, the opposite assumption of order-

invariance is appropriate when dealing with sets of items, where

no inherent order is present.

In Bayesian statistics, the concept related to sets is that of ex-

changeable sequences of random variables. Exchangeability

implies that the joint distribution of any finite subset of variables

is permutation-invariant. This property holds not only when

variables are independent and identically distributed, but also

when they are positively correlated. The latter is what enables

learning from previous observations and allows to reason about

latent variables behind the data as shown by the celebrated de

Finetti’s theorem. In this way, exchangeability has become the

cornerstone assumption of Bayesian modelling.

Meta-learning is one recent field of machine learning research

where exchangeable models can find their profound use. For

instance, in a few-shot concept learning, some tasks can be
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formulated as learning to complete short exchangeable sequences.

While the Bayesian approach is appropriate here, it has several

practical issues. Firstly, doing exact inference is often infeasi-

ble, and secondly, we need a way of dealing with complex high-

dimensional observations, e.g. images, since those are involved

in the most interesting applications. To tackle these issues, it is

therefore appealing to combine the principledness of Bayesian

methodswith an expressive power of deep neural networks, which

is the topic of this dissertation.

This thesis

We propose a family of exchangeable architectures called BRUNO,

which leverages deep learning tools to perform exact Bayesian in-

ference on sets of high-dimensional inputs. BRUNO, when viewed

as a recurrent neural network, is defined in terms of predictive

distributions. In theory, these distributions can be highly complex

as a result of having a powerful bijective neural mapping as a part

of ourmodel. However, these predictive distributions are tractable

to evaluate and to sample from. Both operations have a constant

memory and a linear time complexity in the number of data points

we condition on. Unlike many other methods related to BRUNO,

we use no variational approximations in our model.

The above-mentioned properties of BRUNO stem directly from

building a probabilistic predictive model from basic principles.

With the meta-learning application in mind, exchangeability natu-

rally serves as a starting point. We discuss the implications of such

design and the possibility of building more general exchangeable

models.

We devise BRUNOmodels for both unconditional and conditional

distribution over exchangeable sequences. Together, thesemodels

cover a broad range of applications that require generalisation

from short observed sequences while also modelling sequence

variability. In the unconditional case, an illustrative task is to

generate new instances of a handwritten character given a few

examples of this character written by different people. On the

other hand, the conditional case considers a scenario where the



model additionally receives a vector of labels or tags associated

with every input. For example, if images in the given sequence are

rotated to some known degrees, then the task would be not only to

generate new instances of this character but to do so conditionally

on a desired angle of rotation. In our experiments, we show

how BRUNO can achieve competitive results on such few-shot

generation tasks, and with minor modifications to its training

procedure, few-shot classification tasks as well.

While the construction of predictive distributions in BRUNO

models is done without a reference to the posterior over some

latent variables, it is possible to find the analytic form of this

posterior via an alternative formulation. This allows us to extend

the applications of our models even further. In particular, we

use conditional BRUNO for the problem of task inference in

meta reinforcement learning, where we justify the applicability

of exchangeable models. Also, we work out the details on how

to combine BRUNO with an off-policy reinforcement learning

algorithm so to obtain sample-efficiency, short training times and

the ability to quickly adapt a policy to new tasks.

Our design of BRUNO targets the modelling of high-dimensional

observations, and so in practice, it needs to sacrifice some of its

theoretical properties when used with low-dimensional inputs.

For instance, this is the case in reinforcement learning, where we

need to model a predictive distribution of scalar rewards. We

show that despite the necessary changes, our models remain

successfully functional.

In the final chapter of this thesis, we discuss additional interpreta-

tions of BRUNO by drawing analogies with deep learning models,

memory models and stochastic processes. This allows to gain a

deeper understanding of BRUNO and connect it with a larger body

of literature. For future prospects, we outline several concrete

ideas that could lead to useful extensions of our models. We also

present our view on the current issues in meta-learning research

and how we hope the field will evolve.





Samenvatting

Het concept van een model als voorspeller staat centraal in het

domein van machinaal leren. Veelvoorkomende taken zoals

classificatie, regressie of generatie kunnen worden gezien als het

maken van bepaalde voorspellingen aan de hand van modellen

die relevante eigenschappen van de trainingsgegevens hebben

geleerd. Om efficiënt te leren, moeten de modellen een verzame-

ling juiste aannames over de aard van de gegevens maken. Eén

van die basisaannames is of de volgorde van invoer belangrijk

is. Ordeafhankelijkheid zou bijvoorbeeld een geschikte aanname

zijn voor tekstmodellering, omdat het permuteren van woorden

zinnen een andere betekenis kan geven en daarom willen we

dat ons model deze verandering merkt. Aan de andere kant is

de tegenovergestelde aanname van ordeinvariantie gepast bij

het omgaan met verzamelingen, waar geen inherente volgorde

aanwezig is.

Het concept van uitwisselbare reeksen willekeurige variabelen

in de Bayesiaanse statistiek, is de tegenhanger van de ordeinva-

riantie bij verzamelingen. Uitwisselbaarheid houdt in dat een

gezamenlijke verdeling van een eindige deelverzameling van

variabelen permutatie-invariant is. Deze uitspraak geldt niet

alleen wanneer variabelen onafhankelijk en identiek verdeeld

zijn, maar ook wanneer ze positief gecorreleerd zijn. Dit laatste

maakt het mogelijk om te leren van eerdere waarnemingen en om

te redeneren over de latente variabelen achter de gegevens, zoals

blijkt uit de beroemde stelling van de Finetti. Op deze manier is

uitwisselbaarheid de hoeksteen van de Bayesiaanse modellering

geworden.

ix



Meta-leren is een recent gebied van onderzoek naar machinaal

leren waar uitwisselbare modellen hun nut kunnen vinden. Bij

weinig-pogingen-leren kunnen sommige taken bijvoorbeeld wor-

den geformuleerd als het leren om korte uitwisselbare reeksen

te voltooien. Hoewel de Bayesiaanse benadering hier geschikt

is, heeft deze verschillende praktische problemen. Ten eerste

is een exacte gevolgtrekking vaak onhaalbaar, en ten tweede

hebbenwe eenmanier nodig ommet complexe hoogdimensionale

waarnemingen om te gaan, b.v. afbeeldingen, aangezien deze van

toepassing zijn bij de meest interessante toepassingen. Om deze

problemen aan te pakken, is het daarom aantrekkelijk om het

principe van Bayesiaanse methoden te combineren met de ex-

pressieve kracht van diepe neurale netwerken, wat het onderwerp

is van dit proefschrift.

Deze thesis

We stellen een familie van uitwisselbare architecturen voor, ge-

naamdBRUNO,die diepgaande leermiddelen gebruikenomexacte

Bayesiaanse inferentie uit te voeren op een verzameling van hoog-

dimensionale invoer. Wanneer BRUNO wordt gezien als een

terugkerend neuraal netwerk, wordt het gedefinieerd in termen

van voorspellende kansverdelingen. Hun analytische vorm kan

in theorie arbitrair complex zijn als gevolg van een krachtige

bijectieve neurale afbeelding als onderdeel van ons model. Deze

voorspellende kansverdelingen zijn echter handelbaar om te

evalueren en om van te bemonsteren. Beide bewerkingen hebben

slechts een constant geheugen nodig en een lineaire tijdcomplexi-

teit in het aantal gegevenspunten dat we als gegeven nemen. In

tegenstelling tot veel andere methoden die verband houden met

BRUNO, gebruiken we geen variationele benaderingen in ons

model.

De bovengenoemde eigenschappen van BRUNO komen recht-

streeks voort uit het bouwen van een probabilistisch voorspel-

lend model op basis van basisprincipes. Met het meta-leren als

toepassing in gedachten dient uitwisselbaarheid als natuurlijk

uitgangspunt. We bespreken de implicaties van een dergelijk



ontwerp en de mogelijkheid om meer algemene uitwisselbare

modellen te bouwen.

WeontwerpenBRUNO-modellen voor zowel onvoorwaardelijke als

voorwaardelijke kansverdelingen over uitwisselbare rijen. Samen

omvatten deze modellen een breed scala aan toepassingen die de

veralgemening van korte waargenomen rijen vereisen, terwijl ze

ookde variabiliteit van rijenmodelleren. Inhet onvoorwaardelijke

geval is het een illustratieve taak om nieuwe instanties van een

karakter te genereren aan de hand van enkele voorbeelden van

dit karakter, geschreven door verschillende mensen. Aan de

andere kant beschouwt het voorwaardelijke geval een scenario

waarin het model bovendien een vector ontvangt met labels

die bij iedere invoer horen. Als afbeeldingen in de gegeven

reeks bijvoorbeeld worden geroteerd naar een bepaalde hoek,

dan zou het niet alleen de taak zijn om nieuwe instanties van

dit karakter te genereren, maar om dit voorwaardelijk te doen

onder een gewenste rotatiehoek. In onze experimenten laten we

zien hoe BRUNO competitieve resultaten kan behalen op zulke

generatietakenmet weinig pogingen, enmits kleine aanpassingen

aan de trainingsprocedure, ook op classificatie taken met weinig

pogingen.

Hoewel de constructie van voorspellende verdelingen in BRUNO-

modellen wordt gedaan zonder verwijzing naar de posterior over

enkele latente variabelen, is het mogelijk om de analytische vorm

van deze posterior te vinden via een alternatieve formulering.

Hierdoor kunnen we de toepassingen van onze modellen nog

verder uitbreiden. In het bijzonder gebruiken we voorwaar-

delijke BRUNO voor het probleem van taakinferentie in meta-

reinforcement leren, waar we de toepasbaarheid van uitwissel-

bare modellen rechtvaardigen. We werken ook de details uit

over het combineren van BRUNOmet een off-policy versterkend

leeralgoritme om een betere sample-efficiëntie te verkrijgen, met

bijbehorende korte trainingstijden en de mogelijkheid om een

policy snel aan nieuwe taken aan te passen.

Ons ontwerp van BRUNO is gericht op het modelleren van hoogdi-

mensionale waarnemingen, en daarommoet het in de praktijk en-

kele van zijn theoretische eigenschappen opofferen wanneer het

wordt gebruikt met laagdimensionale inputs. Dit is bijvoorbeeld



het geval bij reinforcement leren, waar we een voorspellende

kansverdeling over scalaire beloningen moeten modelleren. We

laten zien dat ondanks de noodzakelijke veranderingen onze

modellen succesvol blijven functioneren.

In het laatste hoofdstuk van dit proefschrift bespreken we aanvul-

lende interpretaties van BRUNO door analogieën te trekken met

diepe modellen, geheugenmodellen en stochastische processen.

Dit maakt het mogelijk om een dieper inzicht in BRUNO te krijgen

en het te verbinden met een grotere hoeveelheid literatuur. Voor

toekomstige vooruitzichten schetsen we verschillende concrete

ideeën die kunnen leiden tot nuttige uitbreidingen van onze

modellen. Ten slotte presenteren we onze visie op de huidige

problemen binnen het onderzoek naar meta-leren en hoe we

hopen dat het gebied verder zal evolueren.
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1
Introduction

1.1 The Bayesian Paradigm

Bayesian statistics interprets the concept of probability as the

quantification of subjective beliefs and uses probability distribu-

tions to describe all the relevant unknown quantities , such as

statistical hypotheses , as well as the data. The requirement to

specify prior beliefs is one of the identifying features of Bayesian

statistics. The application of Bayes’ theorem and basic rules of

probability give us a way to update the beliefs upon the available

evidence, i.e. learning from the data.

To illustrate these concepts and the basic method of parametric

Bayesian inference, let us consider the following example. We

wish to find the bias of a coin, which we can toss n times, thus

collecting a set of observations, i.e. the realization ofD = {xi}ni=1,

where every xi can be either heads or tails, conventionally denoted

as 1 and 0. More formally, we need to formulate a belief over

the hypotheses regarding the underlying data-generating process

given a set of observationsD from interacting with the system.

We candescribe the repeated coin flips by theBernoulli process pa-

rameterized by θ. This process is defined as a sequence of indepen-
dent random variables x1, x2, x3, . . . with every xi ∼ Bernoulli(θ)
for some value of θ. For example, in the event of θ = 0.3,
p(xi = 1) = 0.3 and p(xi = 0) = 0.7 for every i. Here, and

throughout the thesis, we will follow the notation of Bernardo and



Chapter 1

Smith [6], and use the same lowercase symbol for both random

variables and their values, since the interpretation should always

be clear from the context.

Given the observations, we wish to form a belief over a set of

statistical hypothesesM = {hθ : θ ∈ Θ}, where Θ is a space of

parameter values. In our case, the coin’s bias corresponds to θ,
thus hθ = θ and Θ = [0, 1]. The probability we need is p(θ|D) –
a posterior belief over θ that combines our prior beliefs with the

information from the observed data. As a candidate for the prior

p(θ), we can choose p(θ) = U(0, 1) – a uniform distribution on a

[0, 1] interval. The Bayes rule then tells us how to obtain p(θ|D) by
combining the prior and the likelihood p(D|θ):

p(θ|D) =
p(D|θ)p(θ)
p(D)

(1.1)

In case of independent Bernoulli random variables, the likelihood

is p(D|θ) = θH(1 − θ)T , where H and T is the number of heads

and tails among n tosses. The denominator p(D) is the marginal

likelihood computed as p(D) =
∫ 1
0 p(D|θ)p(θ)dθ, which is often

intractable.

Once we have the posterior distribution, we can answer any

inferential query by computing an expectation of an appropri-

ate function with respect to the posterior. Most often, we are

interested in doing predictions. For example, in case of the coin,

predict the outcome of the next toss xn+1 given previous n tosses,

i.e. finding the posterior predictive distribution p(xn+1|x1:n) that
can be computed as:

p(xn+1|x1:n) =
∫
p(xn+1|θ)p(θ|x1:n)dθ, (1.2)

where we use the notation x1:n to denote x1, . . . xn for n ≥ 1.

Themain problemwith the integral above is that formany relevant

problems it is intractable, and much of the previous research was

dedicated to approximate methods, such as numerical integration

and variational inference [7, 81].

What we presented in this section is a common starting point for

explaining Bayesian learning in many machine learning course

2



1.2 Exchangeability and de Finetti's Theorem

notes. Here, we took for granted the existence of a mathemat-

ical model with some unknown variables, in our case θ, that
we wish to infer. However, one might argue that observable

quantities x1, x2, x3, . . . are the only things that truly exist, and so

our main concern should be a predictive probability model – a

specification of the joint probability distribution for any subset

of x1, x2, x3, . . . [6]. In the next section, we explain an important

assumption that connects the two perspectives.

1.2 Exchangeability and de Finetti's Theorem

Let us return to the coin example and take a closer look at the

sequence of random variables x1, x2, x3, . . . , where every xi rep-
resents a coin flip on the i-th step. If we forget about the data-

generating process and do not hypothesize that every xi is sampled

from Bernoulli(θ) with some θ, can we still assume these random

variables to be independent? If we do, then p(xn+1|x1:n) = p(xn+1)
meaning that the past experience tells us nothing about the

future. For example, a-priori we believe that the coin is fair,

but we observe 100 tosses from which 90 landed heads. The

i. i. d. assumption would force us to adhere to our prior, and thus

assign equal probabilities to heads and tails in the next toss. Com-

mon sense, on the other hand, tells us that heads are more likely.

Thus, in the Bayesian framework, to enable learning from past

observations, we cannot assumemarginal independence. Instead,

the right assumption here is that of conditional independence. In-

deed, in the Bernoulli process, by assuming that xi ∼ Bernoulli(θ)
for some value of θ, we made xi’s conditionally independent and
identically distributed.

The Representation theorem of de Finetti [33], which is central

to motivating parametric models in Bayesian statistics, ties the

notion of conditional independence to the concept of exchange-

ability.

Formally, a stochastic process, or an infinite sequence of random

variables x1, x2, x3, . . . , is said to be exchangeable if for all finite

3
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n ≥ 1 and all permutations π of {1, . . . , n}

p(x1, . . . , xn) = p
(
xπ(1), . . . , xπ(n)

)
, (1.3)

i.e. the joint probability remains the same under any permutation

of the sequence.

Alternatively, the joint distribution p(x1, . . . , xn) can be viewed

as a multivariate distribution in Rn of a random vector with

coordinates corresponding to the variables x1, . . . , xn. By adopt-
ing this perspective, we can think of a stochastic process as a

consistent assignment of finite-dimensional distributions. In this

context, by consistency we mean that for every n, a distribution
defined on Rn can be obtained from a distribution on Rn+1 by

marginalizing out a certain coordinate. If these distributions are

invariant under the re-ordering of coordinates, then the process

is exchangeable [82].

For i. i. d. random variables, the definition in Eq. 1.3 holds since

p(x1, . . . , xn) =
∏n
i=1 p(xi). Thus the i. i. d. assumption is a special

case of exchangeability. However, exchangeability for infinite

sequences, also covers a case of positively correlated random

variables [1]. In the coin flip example, we ruled out the possibility

of marginal independence. At the same time, there is no inherent

order in the sequence of flips, so their joint probability satisfies

the definition of exchangeability in Eq. 1.3.

Another example of an exchangeable sequence is a simplest form

of a Gaussian process, where for every finite n, (x1, . . . , xn) jointly
have a multivariate normal distributionNn(0,Σ) withΣ having a

compound symmetry (CS) structure:

Σij =

{
v, if i = j

ρ, if i 6= j
, (1.4)

where we further need a restriction ρ ∈ [0, v) to make sure that

Σ is a valid covariance matrix for any n. Alternatively, the non-
negativity of ρ can be derived from the properties of infinitely

exchangeable sequences [1, 89]. The sequence is exchangeable

since permuting the dimensions of this Gaussian does not change

the joint p(x1, . . . , xn). This example will be the basis for models
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presented in this thesis and we will later analyse it in greater

detail.

The Representation theorem of de Finetti [33] states that every

exchangeable process is a mixture of i. i. d. processes:

p(x1, . . . , xn) =

∫ n∏
i=1

p(xi|θ)p(θ)dθ, (1.5)

where θ is some parameter (finite or possibly infinite dimensional)

conditioned on which, the random variables are i. i. d. [1]. Here,

we omitted some technicalities present in a general formulation

of this theorem. For instance, we assumed that the distribution

over θ has a density, so we could write p(θ)dθ instead of the more

generalP (dθ), whereP is a probabilitymeasure on θ. Similarly, in

our future explanations, we will have no pretence at a mathemati-

cal rigour, which is above the level necessary for understanding

the main underlying ideas.

One interpretation of de Finetti’s theorem is, that under the

exchangeability assumption, there must exist a θ parameter such

that given θ, xi variables become independent and identically

distributed. In other words, the existence of θ is only justified

under exchangeability.

In our previous Gaussian example, one can show that x1, . . . , xn
are i. i. d.with xi ∼ N (θ, v − ρ) conditioned on θ, while

p(θ) = N (0, ρ). Noticeably, this gives us an alternative way of

sampling from our multivariate Gaussian Nn(0,Σ). Namely,

instead of sampling the whole vector (x1, . . . xn) at once, we can
first sample θ from N (0, ρ) and then sample the values x1 to xn
independently fromN (θ, v − ρ).

The definition of exchangeability and Eq. 1.5 from de Finetti’s

theorem can be formulated in terms of predictive distributions

p(xn+1|x1:n). Exchangeabilty is then defined as two conditions

that both need to hold [35]:

p(xn+1|x1, . . . , xn) = p
(
xn+1|xπ(1), . . . , xπ(n)

)
p(xn+1 = a, xn+2 = b|x1:n) = p(xn+1 = b, xn+2 = a|x1:n),

(1.6)
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and Eq. 1.5 in de Finetti’s theorem takes the form of the predictive

posterior, which we have already seen in Eq. 1.2:

p(xn+1|x1:n) =
∫
p(xn+1|θ)p(θ|x1:n)dθ. (1.7)

Pondering about the meaning of Eq. 1.5 or Eq. 1.7, and given

that exchangeability is a sufficient and necessary condition in

de Finetti’s theorem, another possible interpretation follows:

learning to fit an exchangeable model to sequences of data is

implicitly the same as learning to reason about the latent variables

behind the data [59].

1.3 Exchangeability via Recurrent Neural Networks

Let us first summarize the two equivalent ways of Bayesian learn-

ing as established by de Finetti’s theorem.

One strategy is through explicit Bayesian modelling: one defines

a prior p(θ), a likelihood p(xi|θ) and calculates the posterior in

Eq. 1.1 or predictive posterior in Eq. 1.2. Here, the key difficulty is

the intractability of both expressions as they require integrating

over the parameter θ, so we might need to use approximations.

This could violate the exchangeability property and make the

explicit approach difficult.

On the other hand, we do not have to explicitly represent the

posterior. If the goal is to make predictions, one could define

a predictive (autoregressive) distribution p(xn|x1:n−1) directly,

and as long as the process is exchangeable, it is consistent with

Bayesian reasoning. To our best knowledge, this thesis makes the

first attempt in exploring this implicit way of doing inference. The

key difficulty here is defining an easy-to-calculate p(xn|x1:n−1)
from an exchangeable process. One possible idea on how to

implement this approach is discussed next.

Recurrent neural networks (RNN) are powerful models of autore-

gressive processeswhich satisfy the requirement of an easy evalua-

tion of the predictive distribution. RNNs found many applications

in the domains such as text modelling, speech recognition, music

6



1.4 General application

generation and robot control problems to name a few [47, 61, 104,

110]. In all these problems, the order in which the inputs appear

is important, and RNNs are excellent in modelling it. However,

RNNs’ inherent order dependence poses a challenge if we want

to use them for exchangeable data. To model an exchangeable

processwith RNNs, weneed tomake sure that conditions in Eq. 1.3

or Eq. 1.6 are satisfied. If we could do so, this “exchangeable

RNN”would implicitly do Bayesian inference while giving us exact

predictive probabilities almost for free. In this implicit approach,

we might not be able to recover the usual components such as

the prior, likelihood and the posterior over the latent variables

θ. However, relying on de Finetti’s theorem, we can rest assured

that they exist and can be very complex given the expressiveness

of RNNs. After all, in many practical applications, the predictive

distribution is often the only relevant thing.

Implementing exchangeable models via RNNs is not a straightfor-

ward task and this thesis holds no answer to how one can train or

modify the architecture of an ordinary RNN to model exchange-

able data. Instead, we will follow a path that combines certain

features of both implicit and explicit strategies into amodel, which

we called BRUNO: Bayesian RecUrrent Neural mOdel. Its main

idea is to leverage deep learning tools to perform exact Bayesian

inference on sets of high dimensional, complex observations with

a relatively little computational cost.

1.4 General application

The modelling of unordered sets has been a recent focus in

machine learning, both due to relevant application domains and to

efficiency gainswhen dealingwith groups of objects [116, 127, 137].

An exchangeable sequence can be naturally viewed as a Bayesian

counterpart of a set. This view renders many set-related problems

suitable for the Bayesian approach. For example, consider a task,

where given a few pictures of swooses as in Figure 1.1, we are

asked to draw something alike. We might not have seen a swoose

before, thus all our knowledge about them will be based only on

a couple of images. However, as humans, we have an enormous

7
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experience with concept learning and priors on what water birds

look like. Therefore, it should be easy to identify some common

features in the given images and produce a plausible answer. In

doing so, we perform inference under assumptions that 1) the

order of images is irrelevant, and 2) there exists a correlation

between them. Together these two properties informally describe

exchangeability excluding the i. i. d. case.

Figure 1.1 An example of a swoose (on the left) – a rare hybrid

between a swan (on the right) and a goose.

In machine learning, the problem above is referred to as a few-

shot generation, which we can regard as completing a short

exchangeable sequence of examples from a previously unseen

class. From a learning perspective, one can think of it as learning

a new task, i.e. drawing a swoose based on a few examples and

knowing how to draw birds in general. A larger set of meth-

ods where the same principle applies, is called meta-learning or

learning to learn [107, 119]. Image classification, optimization,

imitation learning, reinforcement learning [80, 128, 130, 138] are

only a few tasks put into the meta-learning framework in recent

years. In many of these cases, the Bayesian approach and the

exchangeability assumption that goes with it, are applicable.

Being able to learn how to learn is seen as one of the premises for

developing artificial agents that learn and think like humans [74].

Given a soaring interest in artificial general intelligence (AGI) and

fascinating results of deep learning methods, the past few years

have seen a lot of research in meta-learning and related areas

such as transfer, continual and multi-task learning [93, 101, 131].

In this thesis, we contribute to expanding the collection of meta-

learning techniques by proposing a novel type of a generative
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model, in which the ideas from deep learning and exchangeability

are combined.

1.5 Thesis Structure

Chapter 2 provides the necessary background on the two main

building blocks for the models presented in the thesis: Gaussian

or Student-t processes and normalizing flows. It also explains the

meta-learning setup and a short overview of the existing meta-

learning approaches. Chapter 3 describes the BRUNOmodel – our

main contribution in this thesis. Chapter 4 outlines a conditional

version of de Finetti’s theorem and presents conditional BRUNO.

We then apply it to the problem of meta reinforcement learning

in Chapter 5. Chapter 6 concludes the thesis with a final overview

of our work and future directions.

The main chapters expand on the following publications:

1. I. Korshunova, J. Degrave, F. Huszár, Y. Gal, A. Gretton, J.

Dambre. BRUNO: a deep recurrent model for exchangeable

data. Advances in neural information processing systems 31

(NIPS), 2018.

2. I. Korshunova, Y. Gal, A. Gretton, and J. Dambre. Condi-

tional BRUNO: a neural process for exchangeable labelled

data. 27th European Symposium on Artificial Neural Networks

(ESANN), 2019.

3. I. Korshunova, J. Degrave, A. Gretton, J. Dambre, F. Huszár.

Exchangeable models in meta reinforcement learning. 4th

Lifelong Learning Workshop at ICML, 2020.

The source code accompanying this thesis is publicly

available at github.com/IraKorshunova/bruno and

github.com/IraKorshunova/bruno-sac.

Among other contributions are works that were published over

the course of the PhD, but are not included in the thesis:
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modelling by recurrent neural networks with long short

term memory units. 16th International Society for Music

Information Retrieval Conference (ISMIR), late-breaking demo

session, 2015.

2. J. Degrave, J. Burms, I. Korshunova, J. Dambre. Using deep

learning to estimate systolic and diastolic volumes fromMRI-

images. Benelearn, 2016.

3. B. Brinkmann, J.Wagenaar, D. Abbot, P. Adkins, S. Bosshard,

M. Chen, Q. Tieng, J. He, F. Muñoz-Almaraz, P. Botella-

Rocamora, J. Pardo, F. Zamora-Martinez, M. Hills, W.Wu, I.

Korshunova, W. Cukierski, C. Vite, E. Patterson, B. Litt, G.

Worrell. Crowdsourcing reproducible seizure forecasting in

human and canine epilepsy. Brain 139 (6): 1713–1722, 2016.

4. I. Korshunova, W. Shi, J. Dambre, L. Theis. Fast face-swap

using convolutional neural networks. IEEE International

Conference on Computer Vision (ICCV), 2017.

5. I. Korshunova, P.-J. Kindermans, J. Degrave, T. Verhoeven,

B. Brinkmann, J. Dambre. Towards improved design and

evaluation of epileptic seizure predictors. IEEE Transactions

on Biomedical Engineering, vol. 65, no. 3, pp. 502–510, 2018.

6. L. Theis, I. Korshunova, A. Tejani, F. Huszár. Faster gaze

prediction with dense networks and Fisher pruning. arXiv

preprint arXiv:1801.05787, 2018.

7. I. Korshunova, H. Xiong, M. Fedoryszak, L. Theis. Discrim-

inative topic modeling with logistic LDA. Advances in Neural

Information Processing Systems 32 (NeurIPS), 2019.

8. L. Theis, I. Korshunova, W. Shi, Z. Wang. Fast face-

morphing using neural networks. United States Patent No.

1055297, 2020.
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2
Background

2.1 Machine Learning

In addition to concepts from Bayesian statistics introduced in the

previous chapter, it is useful to review some general machine

learning definitions that become helpful in understanding the

models we present later in this thesis.

Machine learning can be broadly defined as a study of algorithms

that can learn from data to perform tasks without being explicitly

programmed to do them. Loosely depending on how the data is

used, which data is available, and the purpose of the algorithm,

one can identify three basic paradigms in machine learning:

supervised, unsupervised and reinforcement learning [8].

Supervised learning deals with problems of learning a mapping

fφ from inputs x to outputs y given a set of training pairs

Dtrain = {(x1,y1), . . . (xN ,yN )}. The function fφ is referred to

as a model parameterized by φ. During the learning process

(training), we wish to optimize the model’s parameters φ to get

the smallest loss onDtrain, e.g. φ
∗ = argmin

∑N
i=1 L(φ; (xi,yi)).

The loss function is usually chosen depending on the problem. In

regression, where y is continuous, one can use a squared error:

L(φ; (x,y)) = ‖y − fφ(x)‖2. When classification is the goal, it is

common for the models to output probabilities of categorical

labels p(y|x). Then training often amounts to maximizing the

likelihood of a correct class with L(φ; (x,y)) = − log pφ(y|x).
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Optimizing these and many other loss functions falls under the

framework of maximum likelihood estimation (MLE) in which

one wishes to find values of the parameters that maximize the

likelihood of observed data under the probability distribution

given by the model. Of course, our ultimate goal is not to perform

well only on the train set, but rather have a model that can

generalize to the unseen examples, which is the most important

property of machine learning algorithms.

Unsupervised learning works with settings where no targets y, but
only inputsx are available. The goals of unsupervised learning are

less concrete compared to the supervised case, however, given far

greater amounts of unlabelled data, unsupervised techniques play

a vital role in the machine learning toolkit. Among the central

unsupervised learning tasks are clustering [60], dimensionality re-

duction [125] and density estimation. The latter aims to determine

the distribution of the inputs p(x). We will describe two models

of this type in the next section.

Unlike the previous two paradigms, reinforcement learning (RL)

considers interactive problems where no fixed training or testing

datasets are available [115]. The aim is to build software agents

capable of learning from their own experiences when taking

actions in an environment and trying to maximize cumulative

rewards. An elaborate explanation of RL principles will be given

in the background section of Chapter 5.

Another relevant notion left for us to review is the dichotomy

between discriminative and generative models [9]. These should

not be conflated with supervised and unsupervised learning since

both discriminative and generative models can be trained with

or without supervision. Though, it is indeed less common to

find unsupervised discriminative models. For instance, latent

Dirichlet allocation [12] is an unsupervised generative model,

however, we could build its discriminative variant which still does

not require supervision [68]. According to the definition given

by Bishop and Lasserre [9], a discriminative model factorizes the

joint distribution pφ(y,x) of inputs x and labels y as pφ(y|x)p(x),
and models only the conditional pφ(y|x). On the other hand, a

generative model assigns a joint distribution to all the variables

involved, i.e. pφ(y,x) when we have labels or pφ(x) when we do
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not. The same principles hold for models with latent variables. In

the Gaussian example from Section 1.2, we specified a generative

model by defining both p(θ) and p(x|θ). More recently, the term

“generative” acquired a broader meaning following an intuition

that these models can generate new data instances. For example,

when x is a high-dimensional object and not merely a class label,

models of the conditional distribution p(x|y) are sometimes called

conditional generative [30]. Using either definition, many of the

models we discuss in this thesis are generative, so let us look at

what purposes they serve.

If we have a density pφ(x), sampling from this distribution is one

of the first tasks we can think of. This so-called synthesis task

has been picked up by artists and is since growing popular in

creative domains such as music, poetry or painting [29]. More

practical applications of generative models include compression,

inpainting and denoising of images [118], model-based RL [115],

and topic modelling [12]. Without linking to specific applications,

generative models can be used in unsupervised feature learning,

semi-supervised learning and for improving generalization prop-

erties of supervised models.

2.2 Optimization

In the previous section, wementioned thatmodel training equates

to finding the values of parameters φ in order to minimize some

loss function across the training dataset: L(φ) =
∑N

i=1 Li(φ).
When dealing with high-dimensional parameter spaces, non-

convex loss surfaces and big datasets, as we have in case of neural

networks, often stochastic gradient descent (SGD) and its variants

are the only practical optimization algorithms.

SGD is a simple iterative method that requires only the first-order

derivatives of the loss function with respect to φ in order to find

a local minimum. The word “stochastic” reflects the fact that

only a random batch of n observations (1 ≤ n < N ) is used

at every iteration to compute the loss. For simplicity, we will

still denote this loss as L(φ). At each step of SGD, parameters

are updated by following the direction of the steepest descent:
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φ← φ− λ∇φL(φ), where λ is a learning rate. With a carefully

tuned λ, these vanilla updates are often sufficient. However, it

is common to use additional heuristics to improve convergence

andmake the algorithm less sensitive to the choice of the learning

rate. Among the popular methods are SGD with momentum [102],

RMSProp [120] and Adam [64].

2.3 Deep Learning

Deep learning is a subfield of machine learning focusing on

methods that are based on deep neural networks (DNN). DNNs

are powerful function approximators that, for instance, can learn

intricate mappings between inputs and outputs or model distribu-

tions of high-dimensional complex data types. Following some

important discoveries in the 90s, the full potential of DNNs to

tackle difficult problems was illustrated by Krizhevsky et al. [70] in

the 2012 ImageNet Large Scale Visual Recognition Challenge [22].

Their approach based on deep convolutional neural networks [79]

and efficient use of GPUs significantly outperformed existing state-

of-the-art techniques, thus revolutionizing the field of computer

vision [77]. Improvements of recurrent neural networks [42] had

a similar effect, for instance, in natural language processing and

speech processing. In the next section, we will go over these types

of DNN architectures in more detail.

Generative modelling is one niche where the progress in deep

learning can be readily observed by looking at pictures, reading

texts or listening to audio samples that these models produce. For

instance, current algorithms are capable of generating faces of

non-existing people that are practically indistinguishable from

real photos [62]. In Sections 2.3.2 and 2.3.3, we will review two

classical deep generative models: variational autoencoders and

normalizing flows. Those will be used in constructing BRUNO or

when explaining methods related to it.

14



2.3 Deep Learning

2.3.1 Basic types of deep neural networks

From a constructional perspective, a DNN is a stack of layers,

where each layer performs a certain non-linear transformation of

its inputs. By learning parameters of the transformations, DNNs

can build a multi-level representation of the data in a way that

is useful for a given task. For example, a convolutional network

trained to classify images can learn a hierarchy of features ranging

from simple edges and shapes in the lower layers to high-level

features like eyes or faces in the top layers [84]. In what follows,

we will describe a few commonly used types of layers and their

associated DNN architectures.

Multi-layer perceptrons

Multi-layer perceptrons (MLP) are vanilla feed-forward neural

networks that use dense layers as their main building block. If we

let yn−1 denote the input vector to the n-th dense layer, then its

output yn is computed as:

yn = f(Wnyn−1 + bn),

where Wn is a matrix of weights, bn is a vector of biases, and

f is an elementwise nonlinearity, also known as an activation

function. Widely used choices of activations include sigmoids,

e.g (1 + e−x)−1 or tanh(x), and rectifiers such as max(0, x) and its

variants [19, 39, 87]. Given an input vector x, a neural network

ofN layers implements a sequence of mappings x = y0 7→ y1 7→
y2, . . . , 7→ yN , where yN is the output. Training of this neural

network amounts to minimizing some loss function with respect

to φ = {Wn, bn}n=1,...N – a set of weights and biases from all the

layers. To use the gradient-based optimization as described in

Section 2.2, we can compute partial derivatives of the loss with

respect to individual parameters by a successive application of

the chain rule starting from the last layer. In the context of deep

learning, this method is called backpropagation [102].
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Convolutional neural networks

Densely connected networks are efficient in processing data that

does not exhibit spatial or temporal structure. Therefore, they are

not particularly suited for images, where such structure exists. In

this case, one should opt for a convolutional neural network (CNN)

– a type of DNNs that encodes relevant inductive biases, or in other

words, a set of assumptions derived from our prior knowledge

about the nature of the task. For instance, we know that objects

are likely to change their positions on different pictures. Thus, in

order to locate or classify them, we should at least make parts of

our model equivariant to translations. By saying that some func-

tion f(x) is equivariant, we mean that f(g(x)) = g(f(x)), where
in our case, g is a translation transformation. In CNNs, this type

of equivariance is implemented by restricting the connectivity

patterns and sharing of the weights. Unlike dense layers, whose

inputs and outputs are vectors, convolutional layers work with

feature maps. For example, an RGB image can be represented as

three feature mapsX1,X2,X3, one per each colour channel. An

application of the convolutional layer to this input can be written

as:

Y l = f
( K∑
k=1

W k,l ∗Xk + bl),

where ∗ denotes the 2D convolution, each W k,l is a matrix of

weights, and bl is a bias. Here, Y l represents only one of the

output feature maps. Ranging l from 1 to L yields a stack of output

featuremaps that serve as inputs to the next layer. In classification

tasks, the stack of convolutional layers usually ends with an MLP,

whose last softmax layer outputs the probability over classes.

Recurrent neural networks

As we mentioned earlier, RNNs are powerful autoregressive mod-

els for sequential data in which the order of inputs matters. RNNs

have an internal state h that evolves over time as the network gets

more inputs. Namely, given a previous state ht−1 and a current

input xt, the simplest RNN update rule equates to:

ht = f(Winxt +Uht−1 + b), (2.1)
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whereWin andU are the weights, b is the vector of biases, and f
is usually a tanh nonlinearity. At every step, we can also compute

the output as a function of the state as ot = g(Woutht + bout). For
simplicity, we assumed single-layer transformations, though in

general, the mappings between x, h and o can be deep.

Unrolling the RNN, that is writing down Eq. 2.1 for every step

t = 1, . . . , T , results in an equivalent feed-forward network with

T layers with shared parameters as illustrated in Figure 2.1. The

longer the sequence, the deeper this network becomes. With

increasing depth, our simple update rule usually becomes inad-

equate, as it may result in training instabilities. Moreover, in

practice, such an RNN is unable to maintain long-term dependen-

cies that are crucial for certain applications. Improved update

rules as implemented by the long short-termmemory (LSTM) [52]

or gated recurrent units [18] eliminate these issues.

h0 h1 h2 h3 hT
U U U U=ht

ot

xt

Win

Wout

U

o1

Wout

x1

Win

o2

Wout

x2

Win

o3

Wout

x3

Win

oT

Wout

xT

Win

. . .

Figure 2.1 A schematic of a simple RNN: on the left in a compact

representation containing a loop, and on the right its unrolled

version for T steps.

In many tasks, ot is designed to represent the distribution

p(xt+1|ht) of the next input in the sequence. In theory, the state

ht encapsulates the history of observations x1:t, thus p(xt+1|ht)
corresponds to the predictive distribution p(xt+1|x1:t). Training
of the whole model amounts to maximizing the one-step-ahead

predictions p(xt+1|x1:t) for the observed data with respect to the

weights and biases in all the layers. It is equivalent to maximizing

the likelihood of all observations since the joint distribution

p(x1, . . . ,xT ) can be factorized as
∏T−1
t=0 p(xt+1|x1:t).
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2.3.2 Variational Autoencoders

The variational autoencoder (VAE) [66] is currently one of the

most popular algorithms for implementing learning in deep la-

tent variable models. A few meta-learning methods related to

BRUNO, whichwewill discuss in later chapters, are based onVAEs.

Therefore, it is useful to understand their construction and the

associated concepts, such as variational inference, amortization

and the reparameterization trick.

Consider a latent variable model that specifies a joint distribution

pφ(x, z) over an observed variable x and a latent variable z. In
particular, we are interested in models whose joint distribution

is factorized as pφ(x|z)pφ(z). In order to learn the parameters φ
via MLE, we need to compute the marginal probability of x, also
known as the evidence:

pφ(x) =

∫
pφ(x|z)pφ(z)dz. (2.2)

The integral in Eq. 2.2 has a closed-form solution only for a small

class of distributions, which would be of little use when trying to

model complex data. To allow for more expressive models, it is

common to approximate this intractable integral.

The intractability of the marginal distribution is related to

the intractability of the posterior pφ(z|x) since the two are

connected via pφ(z|x) = pφ(x, z)/pφ(x). Variational inference
techniques aim to approximate the intractable posterior by a

simpler variational distribution qψ(z|x), i.e. pφ(z|x) ≈ qψ(z|x).
In VAEs, qψ(z|x) = N (µ,σ2I) where I is the identity matrix and

(µ,σ) = MLPψ(x), meaning that parameters of this Gaussian

distribution are the outputs of the MLP that takes x as an

input, and whose weights and biases constitute ψ. Using a

common terminology, we will say that the MLP parameterizes the

distribution q. VAEs call this MLP the encoder or the inference

network.

VAEs use a single inference network to compute the approximate

posterior for all points in the dataset. This so-called, amortized

inference, deviates frommore traditional practices, where each
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data point xi gets a separate ψi parameter [11]. The latter tech-

nique might be costly for large datasets since the number of

parameters grows with the number of observations, and each

of these parameters requires a separate optimization loop. VAEs,

on the other hand, do not have these scaling issues.

In addition to the encoder, aVAE defines a decoder or a generation

network that takes z as an input, and outputs parameters of the

distribution pφ(x|z). The encoder-decoder pair that makes a VAE

is illustrated in Figure 2.2.

q(z|x)

x

p(x|z)

z

z ∼ q(z|x)

ψ φ

inference network generation network

Figure 2.2 Encoder-decoder architecture of theVAE. The encoder,

or the inference network, is an MLP that parameterizes the vari-

ational posterior over the latent variable z. Samples from this

posterior are then fed into the decoder that parameterizes p(x|z),
from which new instances of x can be sampled.

Let us return to the question of approximating the marginal distri-

bution pφ(x). Using qψ(z|x) instead of the true intractable poste-

rior pφ(z|x), allows to obtain the following bound on log pφ(x):

log pφ(x) ≥ L(φ,ψ;x)
:= Ez∼qψ(z|x)[log pφ(x|z)]− KL[qψ(z|x)||pφ(z)],

(2.3)

where KL is the Kullback–Leibler divergence between two dis-

tributions. The term L(φ,ψ;x) is called the evidence lower

bound (ELBO). It can serve as a surrogate objective in the MLE

framework, where one needs to find variational parametersψ and

generative parameters φ that maximize ELBO across the training

data, i.e. maxφ,ψ
∑N

i=1 L(φ,ψ;xi).

It is not straightforward to reliably estimate the gradient of the

ELBO with respect to variational parameters ψ as those appear
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in the distribution under which the expectation of the likelihood

in Eq. 2.3 is taken [83]. VAEs use the reparameterization trick to

obtain a differentiable Monte Carlo estimator of this expectation.

The idea is to express z as a deterministic function gψ of an

auxiliary noise variable ε ∼ p(ε), i.e. z = gψ(x, ε). In Gaussian

VAEs with z ∼ N (µ,σ2I) and (µ,σ) = MLPψ(x), we have:

z = µ+ σ � ε with ε ∼ N (0, I),

where� denotes an elementwise product. Using this trick, we get

the following Monte Carlo estimator for the expectation term in

Eq. 2.3:

Ez∼qψ(z|x)[log pφ(x|z)] ≈
1

L

L∑
l=1

log pφ(x|gψ(x, ε(l)))

with ε(l) ∼ N (0, I).

Given the above estimator and the analytic form for the KL diver-

gence KL[qψ(z|x)||pφ(z)] between a Gaussian variational distribu-

tion and a fixed Gaussian priorN (0, I), one can now train a VAE

using standard stochastic gradient methods.

2.3.3 Normalizing Flows

Normalizing flows [117] define a general framework for construct-

ing complex probability distributions by pushing simple base

distributions through a series of differentiable bijective mappings

that typically incorporate neural networks [92]. According to

Papamakarios et al. [92], there are two major groups of flow-

based models: flows composed of a finite number of simple

transformations and continuous-time flows defined by ordinary

differential equations. While most flows deal with real-valued

inputs and transformations in the Euclidean space, some of the

recent models include flows for discrete random variables [54,

122] and flows on spheres [98], among others. The progress is

likely to continue since normalizing flows are currently an active

area of research.

Real-valued non-volume preserving transformation (Real

NVP) [24] is one of the flowmodels that became popular due to its
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efficiency and relative simplicity. Real NVP proposes a design for

a bijective function f : X 7→ Z with X = RD and Z = RD such

that (a) the inverse is easy to evaluate, i.e. the cost of computing

x = f−1(z) is the same as for the forward mapping z = f(x),
and (b) computing the Jacobian determinant takes linear time

in the number of dimensions D. Real NVP assumes a simple

distribution for z, so one can use a change of variables formula to

evaluate p(x):

p(x) = p(z)

∣∣∣∣∣det
(
∂f(x)

∂x

)∣∣∣∣∣ .
In Real NVP, as in its predecessors [21, 23] and other standard flow

models [92], p(z) is chosen to be a fully factorized distribution,

i.e. p(z) =
∏D
i=1 p(zi), usually with p(zi) = N (0, 1). This implies

that by training the model to maximize the likelihood of inputs

in X , we are trying to find a mapping z = f(x) such that the

components of z are independent and normally distributed.

The Real NVP transformation f is defined as a sequence of cou-

pling layers, where each layer implements a mapping Yin 7→ Yout
that transforms half of its inputs while copying the other half

directly to the output:{
y1:dout = y

1:d
in

yd+1:D
out = yd+1:D

in � exp(s(y1:din )) + t(y1:din ),
(2.4)

where� is an elementwise product, s (scale) and t (translation) are
arbitrarily complex functions, e.g. convolutional neural networks

whose outputs match the dimensionality of yd+1:D
in . The inverse

of this mapping is given by the following transformation:{
y1:din = y1:dout
yd+1:D
in =

(
yd+1:D
out − t(y1:dout)

)
� exp(−s(y1:dout)).

It indicates that the backward pass through the network requires

the same amount of compute as the forward pass.

One can show that the coupling layer is a bijective mapping

with a triangular Jacobian, and that a composition of coupling

layers preserves these properties. The conditioning structure of
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coupling layers gives Real NVP the ability to perform sampling

and density evaluation in a single pass. This comes at a cost

of expressive power: a coupling layer is not a universal density

approximator [92]. In practice, however, one can obtain a highly

nonlinear mapping f(x) by stacking coupling layers X 7→ Y1 7→
Y2 · · · 7→ YK 7→ Z while alternating the dimensions that are being

copied to the output.

The coupling layer splits its input into halves and elementwise

transforms the second part as a function of the first. In the

other extreme case, one could split the input into D parts

and transform each of them as function of previous parts, e.g.

yiout = yiinexp(s(y
1:i−1
in )) + t(y1:i−1

in ). This would constitute a fully

autoregressive flow layer, and depending on the implementation,

give rise to flow models such as Masked Autoregressive Flow

(MAF) [91] or Inverse Autoregressive Flow (IAF) [67]. Unlike Real

NVP, these models, in theory, can express any distribution p(x).
However, they do not have the computational symmetry: MAF

requires D sequential passes to generate samples and a single

pass for density evaluation. For IAF, the reverse relations hold.

These properties should be kept in mind when choosing a flow

model.

The real-valued flows are designed to model densities, which

means their inputs are supposed to be instances of a continu-

ous random variable. If the inputs are discrete, the continuous

model will collaps to a degenerate solution, where it places high

probability spikes on the discrete values [124]. Thus, when dealing

with images, usually stored as 8-bit integer arrays, it is common

to dequantize pixel values x ∈ [0, 255]D by adding uniform noise

u ∈ [0, 1)D and then model the density of y = x+ u. Theis et al.
[118] showed, that by training a continuous model pmodel(y) on
data y ∼ pdata, we effectively maximize the lower bound on the

expected log-likelihood of the original integer-valued data. The

latter can be written as Ex∼Pdata

[
logPmodel(x)

]
, where Pdata is the

discrete data distribution and Pmodel(x) is the log-likelihood of x
under a discrete model. The reasoning of Theis et al. [118] goes as
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follows:

Ey∼pdata
[
log pmodel(y)

]
=
∑
x

Pdata(x)

∫
[0,1)

log pmodel(x+ u)du

(by Jensen’s inequality) ≤
∑
x

Pdata(x) log

∫
[0,1)

pmodel(x+ u)du

= Ex∼Pdata

[
logPmodel(x)

]
.

Two important conclusions are to be made from this derivation.

Firstly, a continuous model trained on data, which is dequantized

using uniform noise, cannot collapse to a degenerate solution

since its expected log-likelihood is bounded from above. Secondly,

one needs to be cautious when using average log-likelihoods to

benchmark models in which likelihoods might have different

meanings.

There is another issue we need to address when working with

images or other types of data whose values are limited to a certain

range. During generation, we first sample z from a distribution

whose domain is unbounded and then compute the inverse map-

ping x = f−1(z). This procedure gives no guarantees that values

of x fall within a permissible range. A common solution is to

include an extra transformation as a first layer of the flowmodel

that rescales x (dequantized if needed) to a [0, 1) interval, and
then applies an elementwise function f(x) = logit(α+ (1− 2α)x)
with some small α [24]. The inverse of this logit function produces

outputs between −α
1−2α and 1−α

1−2α , which can then be rescaled and

safely clipped to the range of the original data.

2.4 Meta-learning

Most of the models we discussed above are domain-specific. For

example, a DNN trained to classify between cats and dogs is likely

to succeed exclusively in that single task. Moreover, DNNs are

known to be data-hungry, requiring a large number of training

samples in order to perform well. This is in contrast to how

humans learn: we can use past experiences to learn quickly from

a small number of examples. Meta-learning tries to imitate this

process in a way we formalize below. Our explanation will focus
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on the image classification task, however, the same principles

apply to other tasks such as image generation or policy adaptation

in reinforcement learning [25, 130].

The distinguishing feature ofmeta-learning is that training is done

on a number of tasks, where each task T is associated with some

datasetD. For example, classifying cats versus dogs can be one

task, and classifying birds versus fish can be another. In general,

a meta-learning model aims to minimize some loss L across the

distribution of tasks with respect to model parameters φ [106]:

φ∗ = argmin
φ

ED∼p(D)[L(φ;D)].

Often, in supervised learning problems, the training proceeds in

an episodic manner by randomly sampling from each dataset

D = {(x1, y1), . . . , (xn, yn)} two sets: a support set SD (usually

small) and a query set QD [128]. The meta-learning model can

use the information in the support set to compute probability

pφ(y|x, S) of a label y associated with an observation x from the

query set. We wish to maximize the probability of correct labels

across the training tasks with respect to the model parameters:

φ∗ = argmax
φ

ED
[
ESD,QD

[ ∑
(x,y)∈QD

log pφ(y|x, SD)
]]
.

This training objective matches the desired behaviour at test time:

the model might be asked to classify images from previously

unseen classes while relying on a few labelled examples in the

support set and its ability to learn rapidly from those examples.

It is common to groupmeta-learningmethods intomodel-, metric-

and optimization-based approaches [126] depending on how

pφ(y|x, S) is defined.

• Model-basedmethods specify this probability using a neural

network fφ(x, S) that can quickly adapt to new tasks either

because of its own structure [106] or when it is a subordinate

network governed by a supervisory system [53, 85].

• Metric-based models take a non-parametric approach

akin to k-nearest neighbours algorithm and kernel density
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estimation. Their main idea is to learn a similarity

function kφ over pairs of inputs, and use it to relate a

query to examples in the support set. For instance, in

matching networks [128], kφ weighs the labels in S, i.e.
pφ(y|x, S) ∝

∑
(xi,yi)∈S kφ(x,xi)yi.

• Optimization-based methods represent pφ(y|x, S) as

a mapping fφ(S)(x) whose parameters φ(S) depend

on the support set via the updates of some initial

parameters φ0. In general, these updates can be written as:

φ(S) = gψ(φ0, {∇φ0L(φ0;xi, yi)}(xi,yi)∈S) [126]. Stochastic
gradient descent is special case of this update rule:

φ(S) = φ0 − ψ
∑

(xi,yi)∈S ∇φ0L(φ0;xi, yi). Its use as a

meta-optimizer was proposed by MAML [34] – one of the

most popular methods in this group.

There also exist methods that belong to more than one group. For

example, Meta PixelCNN [96] combines the ideas from model-

based and optimization-based approaches.

As with the ImageNet’s role in promoting deep learning, the

advances in meta-learning would not have been possible without

datasets. In 2015, Lake et al. [72] released the Omniglot dataset

together with five concept learning tasks where the challenge was

to build a singlemodel to solve themall at a human level. The tasks

were: one-shot classification, one-shot generation, parsing and

generation of new concepts either unconditionally or given their

type. Being perceived as themost relevant and perhaps the easiest

of all tasks, one-shot classification became mainstream while less

research was dedicated to the other four. The Omniglot challenge

thus remains [73], even though its relevance is debated.

The Omniglot itself is a dataset of 1623 handwritten characters

from 50 alphabets, where each character is drawn by 20 different

people. Examples of characters grouped by alphabet are given

in Figure 2.3. This is unlike the famous MNIST [78] dataset of

handwritten digits with only 10 classes and 7000 examples per

class. Having a large number of classes with relatively few data

points per class makes Omniglot suitable for testing few-shot

classification and generation methods that we present in this

thesis.
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Figure 2.3 Examples of Omniglot characters grouped by alphabet

(adapted from Lake et al. [72]).

2.5 Gaussian and Student-t Processes

A Gaussian process (GP) is a stochastic process defined as a

collection of random variables, in which any finite collection has a

multivariate normal distribution [95]. For example, if we index the

random variables in Y using a set of integers as y1, y2, y3, . . . , then
in a GP, (y1, y2, . . . yn) ∼ Nn(µ,Σ). GPs can also be viewed as a

generalization of aGaussian distribution to infinite dimensions. In

otherwords, while amultivariateGaussiandescribes a distribution

of a random vector, a Gaussian process describes properties of

a function – an infinite-dimensional object. This also implies

that the space of parameters is infinite-dimensional, which is the

reasonwhyGPs are classified asnon-parametricmodels. If dealing

with infinite-dimensional objects feels uncomfortable, one can

imagine functions as very long vectors. After all, computations

required by GPs make the difference imperceivable as long as we

work with finite datasets.

The marginalization property is what makes GPs practical. For

instance, if a GP specifies p(y1, y2) = N2(µ,Σ), then it also needs

to specify the marginal p(y1) = N (µ1,Σ11). This property holds
irrespective of the number of variables, even when the larger set

contains infinitely many variables.

It is most common to see GPs used in regression problems where

y depends on some input vector x ∈ X [95]. In this case, both the

mean and covariance functions depend on x. The latter is usually
defined using a kernel k(x,x′) – a closed-form expression for the
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dot product between infinitely many features of x and x′. In this

case, it is common to write: y(x) ∼ GP(µ(x), k(x,x′)).

The adoption of kernels makes GP an expressive model, which is

especially well suited for small datasets – a regime where deep

neural networks tend to struggle. Moreover, GPs are valuable

for providing predictive uncertainty. Namely, instead of giv-

ing the point estimate for the function value y∗ at the location

x∗, GP outputs a normal distribution p(y∗|x∗, y1:n,x1:n), where
{(y1,x1), . . . , (yn,xn)} is a set of training points. On the downside,

GPs are known to be computationally expensive as their predictive

distribution requires n × n covariance matrix inversion, thus

entailing a cubic costO(n3).

A GP can be seen as a limiting case of a Student-t process

(TP) – the most general elliptically symmetric processes with

an analytically representable density [109, 136]. Similarly

to the definition of GPs, a TP is a random process where

any finite collection of variables has a multivariate Student-t

distribution: (y1, y2, . . . yn) ∼MV Tn(ν,µ,Σ) with degrees of

freedom ν ∈ R+ \ [0, 2], mean µ ∈ Rn and a positive definite n×n
covariance matrixΣ. Denoting y = (y1, y2, . . . yn), the density of
MV Tn is given by

p(y) =
Γ(ν+n2 )

((ν − 2)π)n/2Γ(ν/2)
|Σ|−1/2

×
(
1 +

(y − µ)TΣ−1(y − µ)
ν − 2

)− ν+n
2

.

The multivariate t-distribution can be derived by integrating over

a scale parameter for the covariance. Namely, when

r ∼ Inv-Gamma(
ν

2
,
1

2
) and y|r ∼ Nn(µ, r(ν − 2)Σ),

then y ∼MV Tn(ν,µ,Σ) [95, 109, 136]. Shah et al. [109] showed

that the same marginal distribution can be obtained from a TP

which was derived by placing an inverseWishart process prior on

the kernel function.

Finding a predictive distribution in case of GPs or TPs equates

to computing a conditional distribution in jointly Gaussian or
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Student-t distributions. Suppose we can partition y into two

consecutive parts ya ∈ Rna and yb ∈ Rnb , such that[
ya
yb

]
∼MV Tn

(
ν,

[
µa
µb

]
,

[
Σaa Σab

Σba Σbb

])
.

Then conditional distribution p(yb|ya) is given by

p(yb|ya) =MV Tnb

(
ν + na, µ̃b,

ν + βa − 2

ν + na − 2
Σ̃bb

)
, where

µ̃b = ΣbaΣ
−1
aa (ya − µa) + µb

βa = (ya − µa)TΣ−1
aa (ya − µa)

Σ̃bb = Σbb −ΣbaΣ
−1
aaΣab.

(2.5)

The expressions for the mean and covariance are the same in GPs,

where p(yb|ya) = Nnb
(µ̃b, Σ̃bb). Here, we see that the conditional

distribution requires a matrix inverse – the major computational

bottleneck in both GPs and TPs. But do not worry: in this thesis,

we will be dealing with a special case of GPs and TPs with linear

time and constant memory complexity.

The parameter ν, representing the degrees of freedom, has a large

impact on the behaviour of TPs. It controls how heavy-tailed

the t-distribution is: as ν increases, the tails get lighter and the

t-distribution gets closer to the Gaussian. From Eq. 2.5, we can see

that as ν or na tends to infinity, the predictive distribution tends

to the one from a GP, while for small ν and na, a TP would give

less certain predictions than its corresponding GP.

A second feature of the TP is the scaling of the predictive vari-

ance with a βa coefficient, which explicitly depends on the val-

ues of the conditioning observations. Looking at the weight
(ν+βa−2)/(ν+na−2), we see that the variance of p(yb|ya) is increased
over the Gaussian default when βa > na, and is reduced other-

wise. In other words, when the samples are dispersed more than

they would be under the Gaussian distribution, the predictive

uncertainty is increased compared with the Gaussian case.
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BRUNO

3.1 Introduction

In 2015, machine learning algorithms were confronted with the

inability to model two important aspects of human learning: gen-

eralization from a single or few examples, and forming abstract,

rich, and flexible representations that can be used for a multitude

of functions [72]. Since then, a lot of progress has been made,

especially in discriminative settings, e.g. [17, 133]. In the field of

generative image modelling, however, the problem of a few-shot

generation remains challenging, and at present, there are only

few flexible deep generative models to solve this problem [3, 20,

28].

In this chapter, we present BRUNO – a model that combines

elements of implicit and explicit approaches to Bayesian inference

as discussed in Section 1.3, and is suitable for both few-shot

generation and classification. BRUNO is provably exchangeable

and makes use of deep features learned from observations so

as to model complex data types such as images. The main idea

behind BRUNO is to construct a bijectivemapping between random

variables xi ∈ X in the observation space and their features

zi ∈ Z. In the feature space, we then define a simple exchangeable

model for sequences z1, z2, z3, . . . , where p(zn+1|z1:n) can be

easily computed using a recurrent formulation. Inverting the

mapping between Z and X allows us to evaluate and sample from
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the predictive distribution p(xn+1|x1:n). BRUNO’s construction
avoids computing the posterior over the latent variables, however,

if we wish to do so, an alternative formulation of the model allows

for it.

The rest of this chapter is structured as follows. In Section 3.2

we look at a few methods selected to highlight the relation of our

work with previous approaches to modelling exchangeable data.

In Section 3.3 we describe BRUNO, basing our explanation on the

background information from Chapter 2. Section 3.4 provides

an alternative formulation of our model in which the posterior

is represented explicitly. In Section 3.5, we illustrate the use

of BRUNO for few-shot image generation, classification, and set

anomaly detection. The discussion follows in Section 3.6.

3.2 Related work

Bayesian sets [38] aim to model exchangeable sequences of bi-

nary random variables by analytically computing the integrals

involving the posterior:

p(x1:n) =

∫ n∏
i=1

p(xi|θ)p(θ)dθ

p(xn+1|x1:n) =

∫
p(xn+1|θ)p(θ|x1:n)dθ

(3.1)

This is made possible by using a Bernoulli distribution for the

likelihood and a beta distribution for the prior. To apply this

method to other types of data, e.g. images, one needs to engineer

a set of binary features [49]. In that case, there is usually no one-

to-onemapping between the input spaceX and the features space

Z: in consequence, it was not possible to use it as a generative

model, so the applications were limited to retrieval.

One group of methods extending this line of research to more

expressive distributions renders the integrals in Eq. 3.1 intractable

and so the variational approximations are employed. These

methods are based on the ideas from variational autoencoders [66,

97] and how to apply them to sets. Neural statistician [28] is one
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example. As in VAEs, neural statistician learns an approximate

inference network over the latent variable zi corresponding to

observations xi. However, it also implements an approximate

inference over a latent variable c – a context that is global to

the set {x1, . . . ,xn}. The architecture for the inference network
q(c|x1, . . . ,xn) maps every xi into a feature vector and applies

a mean pooling operation across these representations. The

resulting vector is then used to produce parameters of a Gaussian

distribution over c. Mean pooling makes q(c|x1, . . . ,xn) invariant
under permutations of the inputs. In addition to the inference

networks, the neural statistician also has a generative component

p(x1, . . . ,xn|c) which assumes that xi’s are independent given c.
Here, it is easy to see that c plays the role of θ from Eq. 3.1. In

the neural statistician, it is intractable to compute p(x1, . . . ,xn),
so its variational lower bound is used instead. In our model, we

perform an implicit inference over θ and can exactly compute

predictive distributions and themarginal likelihood. Despite these

differences, both neural statistician and BRUNO can be applied to

similar tasks, namely few-shot classification and image generation.

Among othermethods that rely on variational inference are gener-

ative matching networks [3], variational homoencoders [50], and a

class of sequential generative models that incorporate VAEs [99].

There also exists a group of generative models capable of few-

shot learning that derive mostly from deep learning ideas and

usually do not have a straightforward Bayesian interpretation,

e.g. energy-based memory models [4], few-shot image generation

using Reptile [20] andmeta PixelCNN [96]. For this reason, we will

not relate BRUNO to these methods.

To summarize, the majority of prior research builds around ideas

of variational inference and VAEs in particular. Thus, BRUNO

outlines a novel meta-learning approach that can compete with

existing methods as we will show in Section 3.5, and allows for

easy ways to extend it as demonstrated by conditional BRUNO in

Chapter 4.
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3.3 Method

In this section, we introduce BRUNO – an exchangeable archi-

tecture in which we combine Student-t processes [109] and Real

NVP [24] resulting in a model with following properties:

1. predictive distribution p(xn+1|x1:n) is tractable to evaluate

and can be sampled from with a linear complexity in the

number of conditioning samples n

2. memory complexity is constant

3. training can be done viamaximum likelihood in anRNN-like

fashion of optimizing one-step-ahead predictions

4. we can uncover the posterior p(θ|x1:n) and the likelihood

p(xi|θ) of the corresponding Bayesian model, though they

are unnecessary for computing p(xn+1|x1:n).

The appealing computational and memory complexity of BRUNO

stems from restricting the covariances of TPs to be compound-

symmetric as in Eq. 1.4, which enables us to derive recurrent

updates for the predictive distribution. In the following, we pro-

vide these recurrent equations and lay out BRUNO’s assumptions.

The schematic of our model is given in Figure 3.1.

Assume we are given a finite subsequence x1, . . . ,xn from an

infinite exchangeable sequence, where every element is a D-

dimensional vector: xi = (x1i , . . . x
D
i ). We apply a Real NVP trans-

formation to every xi, which results in an exchangeable sequence

in the latent space: z1, . . . , zn, where zi ∈ RD. The proof that the
latter sequence is exchangeable is given in Appendix A.1.1.

We make the following assumptions about the latent variables:

A1: the latent variables {zd}d=1,...,D are independent, thus

p(z) =
∏D
d=1 p(z

d)

A2: for every dimension d, we assume the following:

(zd1 , . . . z
d
n) ∼MV Tn(ν

d, µd1,Kd), with parameters:

• degrees of freedom νd ∈ R+ \ [0, 2]
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• mean µd1 is a 1× n dimensional vector of ones multiplied

by the scalar µd ∈ R

• n× n covariance matrixKd withKd
ii = vd andKd

ij,i6=j = ρd,

where 0 ≤ ρd < vd to make sure thatKd is positive-definite.

z11 z21

x1
1 x2

1

z12 z22

x1
2 x2

2

z1 z2

x1 x2

p(x2|x1) = p(z12|z11)p(z22|z21)
∣∣det ∂z2

∂x2

∣∣p(x1) = p(z11)p(z
2
1)
∣∣det ∂z1

∂x1

∣∣

Real
NVP

Real
NVP

Real
NVP-1

sampleTP predictive updates TP predictive updates

Figure 3.1 A schematic of the BRUNO model. It depicts how

Bayesian thinking can lead to an RNN-like computational graph in

which Real NVP is a bijective feature extractor and the recurrence

is represented by Bayesian updates in a compound symmetry

Student-t process. Here, the model is unrolled for two update

steps, where data points x1 and x2 are mapped into latent vectors

z1 and z2. The TPs’ parameters are updated after processing each

input. For example, after observing z1, we update the parameters

of the priors p(z11) and p(z
2
1). At every step, we can evaluate the

distributions p(x1), p(x2|x1), . . . , p(xn+1|x1:n) and sample from

them by first sampling z1 and z2 and then applying the inverse

Real NVP mapping.

The CS structure of the covariance matrix and having the same

mean for every n guarantees that the sequence zd1 , z
d
2 . . . z

d
n is

exchangeable. Because the covariance matrix is simple, we can

derive recurrent updates for the parameters of p(zdn+1|zd1:n). Using
the recurrence is a lot more efficient compared to the closed-form

expressions in Eq. 2.5 since during training we need to compute

the predictive distribution at every step.

We start from a prior Student-t distribution for p(z1) with param-

eters µ1 = µ , v1 = v, ν1 = ν, β1 = 0. Here, we will drop the

dimension index d to simplify the notation. A detailed derivation

of the following results is given in Appendix A.1.2. To compute the
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degrees of freedom, mean and variance of p(zn+1|z1:n) for every
n, we have the recurrence relations:

νn+1 = νn + 1,

µn+1 = (1− dn)µn + dnzn,

vn+1 = (1− dn)vn + dn(v − ρ),
(3.2)

where dn = ρ
v+ρ(n−1) . Note that if wewanted to use a GP intead of a

TP, i.e. assuming that (zd1 , . . . z
d
n) ∼ Nn(µd1,Kd), then recursions

would simply use the latter two equations for µn+1 and vn+1. For

TPs, however, we also need to compute β – a data-dependent term

that scales the covariance matrix as in Eq. 2.5. To update β, we
introduce recurrent expressions for the auxiliary variables:

z̃i = zi − µ,

an =
v + ρ(n− 2)

(v − ρ)(v + ρ(n− 1))
,

bn =
−ρ

(v − ρ)(v + ρ(n− 1))
,

βn+1 = βn + (an − bn)z̃2n + bn(
n∑
i=1

z̃i)
2 − bn−1(

n−1∑
i=1

z̃i)
2.

From these equations, we see that computational complexity of

making predictions in compound symmetry TPs or GPs scales

linearly with the number of observations, i.e. O(n) instead of

a general O(n3) case where one needs to compute an inverse

covariance matrix.

So far, we have constructed a Student-t process in the latent space

Z. By coupling it with a bijective Real NVP mapping, we get an

exchangeable process in space X . Although we do not have a

simple form of the transitions in X , we still can sample from this

process and evaluate the predictive distribution via the change of

variables formula.

Having an easy-to-evaluate autoregressive distribution

p(xn+1|x1:n) allows us to use a training scheme that is common

for RNNs, i.e. maximize the likelihood of the next element

in the sequence at every step. Here, Figure 3.1 can aid in

understanding some details of this training procedure. Our
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objective function for a single sequence of fixed length N can

be written as L =
∑N−1

n=0 log p(xn+1|x1:n), which is equivalent

to maximizing the joint log-likelihood log p(x1, . . . ,xN ). While

we do have a closed-form expression for the latter, we chose

not to use it during training in order to minimize the difference

between the implementation of training and testing phases. Note

that at test time, dealing with the joint log-likelihood would

be inconvenient or even impossible due to high memory costs

whenN gets large, which again motivates the use of a recurrent

formulation.

During training, we update the weights of the Real NVP model

and also learn the parameters of the prior Student-t distribution.

For the latter, we have three trainable parameters per dimension:

degrees of freedom νd, variance vd and covariance ρd. The mean

µd is fixed to 0 for every d and is not updated during training.

3.4 Alternative formulation

Until now, we only needed the predictive distribution p(xn+1|x1:n)
for which we derived a closed-form recurrent formulation without

any reference to the underlying Bayesian model. The latter would

specify prior p(θ), likelihood p(xi|θ), and posterior p(θ|x1:n) dis-
tributions, which some applications might make use of. Unlike

RNNs, BRUNO is only partially a blackbox since it allows to recover

these distributions. Due to the bijective mapping f : X 7→ Z,
exchangeable processes in X and Z are governed by the same

latent variables θ. It implies that:

p(θ|x1:n) = p(θ|z1:n)

p(xi|θ) = p(zi|θ)

∣∣∣∣∣det
(
∂f(x)

∂x

)∣∣∣∣∣ ,
thus formulating BRUNO as a latent variable model. In case of

CS GPs or TPs, it is relatively straightforward to find p(θ|z1:n)
and p(zi|θ), especially when we have independence assumptions

and these distributions factorize, i.e. p(θ|z1:n) =
∏D
d=1 p(θ

d|zd1:n).
Firstly, we will deal with GPs as those will later serve as a basis for

derivations in TPs.

35



Chapter 3

As usual, we assume an exchangeable process where for any finite

n, z1, . . . zn ∼ Nn(µ1,Σ) with Σii = v, Σij,i6=j = ρ. Using the

implications of de Finetti’s theorem [76], one can show that:

p(zi|θ) = N (θ, v − ρ),
p(θ) = N (µ, ρ).

(3.3)

We can arrive to this result in a more intuitive way by using a

parameterization based on standard normal random variables.

For example, a random variable y ∼ N (µ, σ2) can be written as

y = µ + σε with ε ∼ N (0, 1). Given this form for n-dimensional

normal vectors [75], we can write zi as zi = µ+
√
ρη +

√
v − ρξi,

where η ∼ N (0, 1) and ξi ∼ N (0, 1). From this representation, the

expressions for p(zi|θ) and p(θ) in Eq. 3.3 follow immediately.

Models with Gaussian priors and likelihoods are well-studied

objects in conjugate Bayesian analysis [86]. Thus, we can

look up mean and variance parameters of the posterior

p(θ|z1:n) = N (µn, σ
2
n):

µn =

(
1

ρ
+

n

v − ρ

)−1(
µ

ρ
+

∑n
i=1 zi
v − ρ

)

σ2n =

(
1

ρ
+

n

v − ρ

)−1
(3.4)

In the same way, we can find the posterior predictive distribution:

p(zn+1|z1:n) = N (µn, σ
2
n + v − ρ). However, we have already

derived this result in Appendix A.1.2, where our starting point

was the expression for the conditional distribution of multivariate

normal distribution. This again proves the equivalence between

the autoregressive and the Bayesian description of BRUNO.

Finding the posterior concludes our interpretation of BRUNO as

a latent variable model. The same analysis holds for TP-based

BRUNOmodels, though, the equations become more elaborate,

and we present them in Appendix A.1.3.
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3.5 Experiments

In this section, we will consider a few problems that fit naturally

into the framework of modelling exchangeable data. We chose to

work with sequences of images, so the results are easy to analyse,

yet BRUNO does not make any image-specific assumptions, and

our conclusions can generalise to other types of data. Specifically,

for non-image data, one can use a general-purpose Real NVP

coupling layer as proposed by [91]. In contrast to the original Real

NVPmodel, which uses convolutional architecture for scaling and

translation functions in Eq. 2.4, a general implementation has s
and t composed from fully connected layers. We experimented

with both convolutional and non-convolutional architectures, the

details of which are given in Appendix A.2.1.

In our experiments, all BRUNOmodels are trained on thousands

of image sequences, each of length 20. We form every sequence by

uniformly sampling a class and then selecting 20 random images

from that class. In this scheme, we imply that the exchangeability

assumption holds within each sequence, and sequences them-

selves are i.i.d. A model trained to maximize the likelihood of

images within each sequence thus implicitly learns to infer a class

label that is global to the sequence. In what follows, we will see

how this property can be used in a few tasks.

3.5.1 Image generation

We first consider a problem of generating samples conditionally

on a set of images, which reduces to sampling from a predictive

distribution. This is different from VAE-based approaches, where

one needs to infer the posterior over some meaningful latent

variable and then “decode” it.

To draw samples from p(xn+1|x1:n), we first sample

z ∼ p(zn+1|z1:n) and then compute the inverse Real NVP

mapping: x = f−1(z). Since we assumed that dimensions of

z are independent, we can sample each zd from a univariate

Student-t distribution. To do so, we modified Bailey’s polar
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t-distribution generation method [2] to be computationally

efficient for GPU. Its algorithm is given in Appendix A.2.1.

In Figure 3.2, we show samples from the prior distribution

p(x1) and conditional samples from a predictive distribution

p(xn+1|x1:n) at steps n = 1, . . . , 20. Here, we used a convolutional

Real NVP model as a part of BRUNO. The model was trained on

Omniglot [72] same-class image sequences of length 20 and we

used the train-test split and preprocessing as defined by [128].

Namely, we resized the images to 28× 28 pixels and augmented

the dataset with rotations by multiples of 90 degrees yielding

4,800 and 1,692 classes for training and testing respectively.

To better understand how BRUNO behaves, we test it on special

types of input sequences that were not seen during training. In

Figure 3.3, we give an example where the same image is used

throughout the sequence. Here, we want to illustrate how samples

variability depends on the variance of the inputs. From Figure 3.3,

we see that in the case of a repeated input image, samples get

more coherent as the number of conditioning inputs grows. It also

shows that BRUNO does not merely generate samples according

to the inferred class label. This property does not hold for the

neural statistician model [28], discussed in Section 3.2. As men-

tioned earlier, the neural statistician computes the approximate

posterior q(c|x1, . . . ,xn) and then uses its mean to sample x from

a conditional model p(x|cmean). This scheme does not account

for the variability in the inputs as a consequence of applying

mean pooling over the features of x1, . . . ,xn when computing

q(c|x1, . . . ,xn). Thus, when all xi’s are the same, it would still

sample different instances from the class specified by xi. Given
the code provided by the authors of the neural statistician and

following email exchange, we could not reproduce the results from

their paper, so we refrained frommaking direct comparisons.

While Omniglot is limited to 20 images per class, we can ex-

periment with distributions conditioned on more examples us-

ing MNIST [78], Fashion-MNIST [134] or CIFAR-10 [69]. In Fig-

ure 3.4, we show samples from the model trained on images of

even MNIST digits. More samples from convolutional and non-

convolutional architectures trained on these datasets are given in

Appendix A.2.1.
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Figure 3.2 Samples generated conditionally on the sequence of

the unseen Omniglot character class. An input sequence is shown

in the top row and samples in the bottom 4 rows. Every column

of the bottom subplot contains 4 samples from the predictive

distribution conditioned on the input images up to and including

that column. That is, the 1st column shows samples from the prior

p(x)when no input image is given; the 2nd column shows samples

from p(x|x1) where x1 is the 1st input image in the top row and

so on. More examples are given in Appendix A.2.1.

39



Chapter 3

Figure 3.3 Samples generated conditionally on images from an

unseen Omniglot character class. Top: input sequence of 20

images from one class. Bottom: the same image is used as an

input at every step.

Figure 3.4 MNIST samples from p(x|x1:n) for every

n = 480, . . . , 500. Top: input sequence (given in the top row of

each subplot) is composed of random same-class test images.

Bottom: same image is given as input at every step. The model

was trained only on even digits, so it did not see digit ‘1’ during

training.
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Finally, it is useful to analyse the covariance parameters of TPs

after training. We observe that BRUNO learns to correlate only a

small portion of dimensions. For the Omniglot model, Figure 3.5

plots the number of TPs where correlations ρd/vd exceed a certain

value on the x-axis. Here, only 28 dimensions out of 784 have

a correlation higher than 0.1. Those processes would largely

be responsible for model’s adaptation – the ability to shift the

predictive distribution based on a given set of inputs. One can also

think about this from a perspective of task-specific parameters,

as opposed to global parameters that are shared between tasks.

Global parameters can include the weights of the Real NVP and

parameters of those TPs, where correlations are negligible. The

latter implies that predictive distribution remains close to prior.

Therefore, it is reasonable to expect that dimensions zd where
ρd/vd ≈ 0 can only capture general image features as in a stand-

alone Real NVP model. To sum up, the bijective mapping in

BRUNO’s construction restricts the dimensionality of the feature

space Z. However, given that Z is large enough, BRUNO is able to

assign a portion of the dimensions in Z, or rather TPs associated
with those dimensions, to be responsible for the meta-learning

aspect of the model.

Figure 3.5 Number of dimensions where ρd/vd > ε for the Om-

niglot model (plotted on a double logarithmic scale). Similar plots

for CIFAR-10 and MNISTmodels are given in Appendix A.2.1.
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3.5.2 Few-shot classification

Previously, we saw that BRUNO can generate images of the unseen

classes even after being conditioned on a couple of examples. In

this section, we will see how one can use its conditional probabili-

ties not only for generation, but also for a few-shot classification.

We evaluate the few-shot learning accuracy of our Omniglotmodel

from the previous section on the unseen Omniglot characters

from the 1,692 testing classes following the n-shot and k-way
classification setup proposed by [128]. For every test case, we

randomly draw a test imagexn+1 and a sequence of n images from

the target class. At the same time, we draw n images for every of

the k − 1 random decoy classes. To classify an image xn+1, we

compute p(xn+1|xC=i
1:n ) for each class i = 1 . . . k in the batch. An

image is classified correctly when the conditional probability is

highest for the target class compared to the decoy classes. This

evaluation is performed 20 times for each of the test classes and

the average classification accuracy is reported in Table 3.1.

For comparison, we considered three models from [128]: (a) k-

nearest neighbours (k-NN), where matching is done on raw pixels

(Pixels), (b) k-NN with matching on discriminative features from

a state-of-the-art classifier (Baseline Classifier), and (c)Matching

networks.

We observe that BRUNO model from Section 3.5.1 outperforms

the baseline classifier, despite having been trained on relatively

long sequences with a generative objective, i.e. maximizing the

likelihood of the input images. Yet, it cannot compete with match-

ing networks – a model tailored for a few-shot classification and

trained in a discriminative way on short sequences such that its

test-time protocol exactlymatches the training time protocol. One

can argue, however, that a comparison between models trained

generatively and discriminatively is not fair. Generativemodelling

is amore general, harder problem to solve than discrimination, so

a generatively trained model may waste a lot of statistical power

onmodelling aspects of the data which are irrelevant for the classi-

fication task. To verify our intuition, we fine-tuned BRUNO with a

discriminative objective, i.e. maximizing the likelihood of correct

labels in n-shot, k-way classification episodes formed from the
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training examples of Omniglot. While we could sample a different

n and k for every training episode like in matching networks, we

found it sufficient to fix n and k during training. Namely, we chose

the setting with n = 1 and k = 20. From Table 3.1, we see that

this additional discriminative training makes BRUNO competitive

with state-of-the-art models across all n-shot and k-way tasks.

Table 3.1 Classification accuracy for a few-shot learning task on

the Omniglot dataset.

Model
5-way 20-way

1-shot 5-shot 1-shot 5-shot

PIXELS [128] 41.7% 63.2% 26.7% 42.6%
BASELINE CLASSIFIER [128] 80.0% 95.0% 69.5% 89.1%
MATCHING NETS [128] 98.1% 98.9% 93.8% 98.5%

BRUNO 86.3% 95.6% 69.2% 87.7%
BRUNO (discriminative fine-tuning) 97.1% 99.4% 91.3% 97.8%

3.5.3 Set anomaly detection

Online anomaly detection for exchangeable data is another appli-

cation where we can use BRUNO. This problem is closely related

to the task of content-based image retrieval, where we need to

rank an imagex on howwell it fits with the sequencex1:n [49]. For

the ranking, we use the probabilistic score proposed in Bayesian

sets [38]:

score(x) =
p(x|x1:n)

p(x)
.

This score compares the density ofx under the predictive distribu-

tion to its density under the prior. Note that in BRUNO, when we

care exclusively about comparing ratios of conditional densities

of x under different sequences x1:n, we can compare densities in

the latent space Z instead. This is because the Jacobian from the

change of variables formula does not depend on the sequence we

condition on.
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For the following experiment, we trained a small convolutional

version of BRUNO only on even MNIST digits (30,508 training

images). In Figure 3.6, we give typical examples of how the score

evolves as the model gets more data points and how it behaves in

the presence of inputs that do not conform with the majority of

the sequence. This preliminary experiment shows that our model

can detect anomalies in a stream of incoming data.

(a) An input sequence of digit 1 images with a single image of a 7.

(b) An input sequence of digit 9 images with a single image of a 5.

Figure 3.6 Evolution of the score as the model sees more images

from the input sequence whose typical representatives are plotted

horizontally. Outliers that were identified based on the interquar-

tile range are marked with vertical red lines and plotted on the

right in the order from top to bottom. Note that the model was

trained only on images of even digits.
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3.5.4 GP-based models

When jointly optimizing Real NVP with TPs or GPs on top, we

noticed that training of TP-based models can be easier compared

to GP-based models. BRUNO with TPs appears more robust to

anomalous training inputs and is less sensitive to the choice of

hyperparameters. Under certain conditions, we were not able to

obtain convergent training with GP-based models which was not

the case when using TPs. We could pinpoint a few determining

factors: (a) the use of weight normalisation [105] in the Real NVP

layers, (b) an initialisation of the covariance parameters, and (c)

presence of outliers in the training data. In Figure 3.7, we give

examples of learning curves when BRUNO with GPs tends not

to work well. Here, we use a convolutional Real NVP and train

on Fashion MNIST. To simulate outliers, we occasionally feed

sequences with some of the images completely white.

The results of this partial ablation study are insufficient to draw

general conclusions, andwe foundmanyother settingswhere both

versions of BRUNOdiverge or theyperformequallywell in termsof

test likelihoods, sample quality and few-shot classification results.

Based on our experience, we can speculate that when extending

BRUNO to new problems, it is reasonable to opt for GP-based

models due to their simpler implementation. We also recommend

using weight normalisation, small initial covariances, and small

learning rates for a start. However, when finding a good set of

hyperparameters is difficult, it is worth using TPs instead. Also,

it remains true that a Student-t process is a strictly richer model

class for the latent space with negligible additional computational

costs.
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Figure 3.7 Negative log-likelihood of TP and GP-based BRUNO

models on the training batches, smoothed using a moving aver-

age over 10 points. Top: without weight normalisation, initial

covariances are sampled from U(0.1, 0.95) for every dimension.

Here, the GP-based model diverged after a few hundred iterations.

Adding weighnorm fixes this problem. Middle: with weight

normalisation, covariances are initialised to 0.1, learning rate

is 0.002 (twice the default). In this case, the learning rate is too

high for bothmodels, but the GP-basedmodel suffers from itmore.

Bottom: with weight normalisation, covariances are initialised to

0.95.
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3.6 Discussion and conclusion

In this chapter, we introducedBRUNO, anew technique combining

deep learning and Student-t or Gaussian processes for modelling

exchangeable data. With this architecture, we may carry out

Bayesian inference, avoiding the need to compute posteriors and

eliminating the high computational cost or approximation errors

often associated with explicit Bayesian inference. At the same

time, BRUNO can be viewed as a latent variable model with a

closed-form posterior which can be computed if we wish to. This

can serve both as an advantage and a limitation. On one hand,

it is pleasing that BRUNO is a relatively simple model for the

types of problems it undertakes. However, we did not achieve

the goal of designing a black-box exchangeable RNN capable of

implicit Bayesian inference with possibly infinite-dimensional

latents, which would be an increasingly expressive model.

If we ignore the Bayesian aspect of BRUNO, one might ques-

tion the practicality of having a bijective mapping between high-

dimensional inputs and their features. This part of the model

introduces the bulk of the computations, which could possibly

be eliminated if not for the theoretical foundations. For example,

we could use an autoencoder to obtain low-dimensional repre-

sentations of high-dimensional inputs and train BRUNO on top of

those embeddings. This would violate our claim to modelling an

exchangeable process in the original input space, but might still

make a useful model with the same capabilities as BRUNO.

In its present form, BRUNOshowspromise for applications such as

conditional image generation, few-shot concept learning, few-shot

classification and online anomaly detection. The probabilistic

construction makes the BRUNO approach particularly useful

and versatile in transfer learning and multi-task situations. To

demonstrate this, we showed that BRUNO trained in a generative

way achieves good performance in a downstream few-shot classi-

fication task without any task-specific retraining. However, the

performance can be significantly improved with discriminative

fine-tuning.

While we are satisfied with BRUNO’s performance on Omniglot,

we cannot disregard a line of research that questions the ca-

47



Chapter 3

pacity of Omniglot and other common benchmarks, e.g. mini-

ImageNet [128], for testing few-shot capabilities of different al-

gorithms [57]. This is mainly attributed to the similarity in class

semantics between training and testing sets. For instance, in

Omniglot, all of the images are characters, where even some

train and test characters are visually similar. Meta-Datasets [123]

is a recently introduced benchmark that reflects more realistic

meta-learning conditions, where tasks canoriginate fromdifferent

datasets, eachwith distinct data distribution. Itwouldbe insightful

to test BRUNO on Meta-Datasets, though the type of its images

requires larger Real NVP models, which are out of reach due to

our hardware constraints. This was also the main reason why our

experiments focused on Omniglot.

Training BRUNO is a form of meta-learning or learning-to-learn:

it learns to perform Bayesian inference on various sets of data.

Just as encoding translational invariance in convolutional neural

networks seems to be the key to success in vision applications, we

believe that the notion of exchangeability is equally central to data-

efficient meta-learning. In this sense, exchangeable architectures

like BRUNO can be seen as the most natural starting point for

these applications.

As a consequence of exchangeability-by-design, BRUNO is en-

dowed with a hidden state which integrates information about

all inputs regardless of sequence length. This desired property

for meta-learning is usually difficult to ensure in general RNNs

as they do not automatically generalise to longer sequences than

they were trained on and are sensitive to the ordering of inputs.

Based on this observation, the most promising applications for

BRUNOmay fall in the many-shot meta-learning regime, where

larger sets of data are available in each episode. Handling of large

datasets or settings with constrained memory is also enabled by

the recurrent formulation of BRUNO, where an observation xi
can be discarded after we used it to update the parameters of

the predictive distribution. Such requirements naturally arise in

privacy-preserving on-device machine learning, which is another

potential future application area for BRUNO.

In the next chapter, we will present a conditional version of

BRUNO which models a distribution p(xn+1|hn+1,x1:n,h1:n) with
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hi being labels or tags associated with observations xi. This

conditional extension allows BRUNO to tackle problems where

machine learning algorithms have only recently started to show

significant progress as the result of building on top of advances in

generative modelling and using current hardware capabilities.
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Conditional BRUNO

4.1 Introduction

A natural extension to models introduced in the previous chapter

is to define a BRUNO process with non-trivial labels, i.e when

each x depends on some vector h of labels or tags. An illustrative

task for this model would be to generate new viewpoints of a

scene given a few images of that scene under different camera

positions [31]. Here, the camera location corresponds to h, and
x(h) represents a picture as seen from h. This is analogous to the

common GP regression setting as discussed in Section 2.5, except

that our model is best adapted to work with high-dimensional

outputs, such as images, and it needs to be trained in a meta-

learning fashion.

Following an accepted notation in the literature, we will write the

predictive distribution in our model as p(xn+1|hn+1,x1:n,h1:n).
However, we do not assume h to be a random variable. In

particular, p(x|h) does not refer to the conditional distribution in a

bivariate process ofx andh. Initially, this was a point of confusion
for us, however, a brilliant clarification has been given in the work

of McCullagh [82]. We will use his paper as a basis for our further

explanation of exchangeability in regression models.

McCullagh [82] defines h : U 7→ Ω as a function on the countably

infinite set of statistical units U that takes values in an arbitrary set

Ω. The set U is the index set on which the stochastic process
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is defined, and Ω is known as the set of labels. For example,

in the viewpoints generation task, we can define U as a set of

natural numbers and establish a surjective mapping to a finite set

of camera positions Ω. In practice, we only observe x-values of
the process on some finite subset S = {u1, . . . , un} ⊂ U . For any
size n = |S|, a stochastic process needs to assign a distribution

PS over x(S) =
(
x(h1), . . . ,x(hn)

)
in such a way that all finite-

dimensional distributions are consistent. Namely, when S′ ⊂ S
then PS′ is a marginal of PS under the deletion of coordinates that

are not in S′.

If we have two finite sets S and S′ of any equal size n, then
according to McCullagh [82], a process is regression exchangeable if

PS = PS′ when h takes the same values on S and S′.

To better undestand this definition, let us consider a Gaussian

process x(h) ∼ GP(µ(h), k(h,h′))– an example of a regression

exchangeable process. For n = 2, assume that h takes the values

(a, b) on S and (b, a) on S′. Then the densities of PS and PS′ are

respectively:

N
([µ(a)

µ(b)

]
,

[
k(a, a) k(a, b)
k(b, a) k(b, b)

])
andN

([µ(b)
µ(a)

]
,

[
k(b, b) k(b, a)
k(a, b) k(a, a)

])
.

Since the first Gaussian corresponds to p(x(a),x(b)), and the

second one – to p(x(b),x(a)), we conclude that PS and PS′ define

the same distribution.

TranslatingMcCullagh’s [82] definition of regression exchangeabil-

ity into the form of Eq. 1.3, that focuses on sequences of random

variables rather than distributions, gives us:

p(x1, . . . ,xn|h1, . . . ,hn) = p
(
xπ(1), . . . ,xπ(n)|hπ(1), . . . ,hπ(n)

)
, (4.1)

where we denoted xi = x(hi).

Similarly, the consistency property can be written as:

p(x1:m|h1:m) =

∫
p (x1:n|h1:n) dxm+1:n for 1 ≤ m < n. (4.2)

As discussed in Section 1.2, in order tomake a connection between

exchangeability and Bayesian modelling, we need de Finetti’s the-

orem, which we previously formulated using Eq. 1.5 and 1.7. For
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regression exchangeable processses, we can write the following

analogous equations:

p(x1:n|h1:n) =
∫
p(θ)

∏n
i=1 p(xi|hi,θ)dθ (4.3)

p(xn+1|hn+1,x1:n,h1:n) =
∫
p(θ|x1:n,h1:n)p(xn+1|hn+1,θ)dθ (4.4)

It is interesting to note, that according to Garnelo et al. [37] and

Yang et al. [135], the conditions in Eq. 4.1 and 4.2 that make

de Finetti’s theorem applicable, can be gathered from the Kol-

mogorov extension theorem [90]. Also, these papers refer to the

above equations as the conditional version of de Finetti’s theorem,

which is the terminology we will sometimes use as well.

Following the reasoning behind the original BRUNO,wewould like

to design amodel where we directly construct a stochastic process

that satisfies Eq. 4.1 and Eq. 4.2, and whose predictive distribution

p(xn+1|hn+1,x1:n,h1:n) is easy to evaluate and to sample from. In

Section 4.3, we show how this can be done by slightly modifying

the architecture of BRUNO. Despite our earlier remarks on the

use of conditional distributions in reference to p(x|h), we still

name this model “conditional” in order to make a distinction from

the previously introduced model. Thus, in this chapter, we will

present conditional BRUNO, or C-BRUNO for short.

4.2 Related work

In the related work section of BRUNO 3.2, we identified a group of

methods that build upon the ideas of VAEs. The same group exists

in the conditional case. One example that became prominent

in recent years is the Neural Process (NP) [37]. NPs rely on

the conditional version of de Finetti’s theorem and define p(θ)
and p(xi|hi,θ) such that one can use variational techniques to

approximate the integrals in Eq. 4.3 and 4.4. Given that the main

goal of NPs is to make predictions, it is more relevant to compute

the lower bound for log p(xn+1|x1:n,h1:n+1) in Eq. 4.4. Alterna-

tively, NPs derive the lower bound for the predictive distribution

log p(xn+1:n+m|x1:n,h1:n+m) ofm query points at once:
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log p(xn+1:n+m|x1:n,h1:n+m)

≥ Eθ∼qψ(θ|x1:n+m,h1:n+m)

[
n+m∑
i=n+1

log p(xi|hi,θ)

]
−KL [qψ(θ|x1:n+m,h1:n+m)||qψ(θ|x1:n,h1:n)] .

Here, qψ(θ|x1:n,h1:n) and qψ(θ|x1:n+m,h1:n+m) are Gaussian vari-

ational posterior distributions parameterized by a permutation-

invariant neural network. To achieve the invariance, NPs use

mean pooling to aggregate representations over n or n+m pairs

of inputs (xi,hi) as shown in Figure 4.1. Note that the use of

query points in the variational posterior introduces a mismatch

between the training and testing regimes of NPs. In the lat-

ter case, since we do not know the query points up front, the

variational posterior is only conditioned on n points from the

context set. Figure 4.1 illustrates how NPs are used during test

time. The effectiveness of NPs was demonstrated on problems

with low-dimensional observations such as 1D regression, where

NPs assume that p(x|h,θ) = N (µ, σ2) with (µ, σ) = MLPφ(h,θ).
If one wishes to model complex high-dimensional inputs, the

information in θ can be used to condition a deep generativemodel.

For example, Generative Query Networks (GQN) [31] build upon

NPs principles, but use powerful recurrent density models for

p(x|h,θ), thus achieving remarkable results in tasks like 3D scene

reconstruction.

NPs and several other important approaches in meta-learning,

such as the model-agnostic meta-learning (MAML) [34], prototyp-

ical networks [111], hyper-networks [43], can be viewed under

a framework of meta-learning approximate probabilistic infer-

ence for prediction (ML-PIP) [40]. As usual, the aim here is to

approximate the predictive posterior p(xn+1|hn+1,x1:n,h1:n). To
do so, ML-PIP uses a distribution qψ(xn+1|hn+1,x1:n,h1:n), which
is constructed based on the amortized approximate posterior

qψ(θ|x1:n,h1:n) over the task-specific latent parameters θ:

qψ(xn+1|hn+1,x1:n,h1:n) =

∫
p(xn+1|hn+1,θ)qψ(θ|x1:n,h1:n)dθ,
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θ ∼ q(θ|x1:n,h1:n)

p(xn+1|hn+1,θ)

hn+1,θ

φ

decoder

Figure 4.1 A schematic of Neural Processes as used at test time.

The encoder maps every tuple (xi,hi) in the context set into

a representation ri and aggregates the obtained r1, . . . , rn by

taking their average. The mean representation is then mapped

to the parameters of the variational posterior qψ(θ|x1:n,h1:n).
Here, ψ denotes all weights and biases in the encoder network,

i.e. ψ = {ψ(1),ψ(2)}. A sample θ ∼ qψ(θ|x1:n,h1:n) is fed to

the decoder together with some label. From the distribution

parameterized by the decoder we can sample new instances of x
conditionally on the label h and the value of θ.

where qψ is an order-invariant neural network with parameters

ψ, and the integral can be approximated using Monte Carlo sam-

pling.

Versa [40] is a particular instance of the ML-PIP framework which

is suitable for view reconstruction. In Section 4.4, wewill compare

Versa with C-BRUNO on this task.

Outside of the meta-learning context, it is possible to draw par-

allels between C-BRUNO and the idea of warped GPs [112]. In

a regression problem, their approach is to map a 1-dimensional

targetx into a latent variable z using a learnable invertible transfor-
mation f such that the transformed data z can bewell-modelled by

a GP, i.e. z(h) ∼ GP(µ(h), k(h,h′)). This leads to a non-Gaussian

process in the original space with more complex predictive dis-
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tributions, which unlike Gaussians, could be multimodal and

asymmetric. It is possible, however, to estimate the shape of the

predictive distribution by computing the median and percentiles.

The idea of constructing a non-Gaussian process by the means of

invertible mappings is what connects our model to warped GPs.

4.3 Method

Construction of conditional BRUNO requires the same mathe-

matical tools as the unconditional model: compound symmetry

Gaussian or Student-t processes, and an expressive bijective neural

network, for which we chose Real NVP. To model distributions

p(xn+1|hn+1,x1:n,h1:n), the only modification we need is to make

Real NVP depend on the labels hi. In this case, it implements a

mapping zi = f(xi,hi), where every observation xi is mapped to

features zi conditionally on hi. If as previously, we assume a fixed

distribution for features in Z, we would still model a conditional

density of inputs in X since the conditioning on h is baked into

the Jacobian, i.e.:

p(x|h) = p(z)

∣∣∣∣∣det
(
∂f(x,h)

∂x

)∣∣∣∣∣ .
Tomodel conditional distributions p(x|h)with Real NVP, we need

to ensure that scaling and translation networks s and t in Eq. 2.4

depend on h. One simple way to do it is to concatenate the embed-

dings of h to the inputs of dense and convolutional layers within

the s and t networks. Other works confirmed the effectiveness of

this approach, though exact implementation details of this idea

can vary [44, 91].

Having built a conditional bijective mapping, we still need to

specify the stochastic process in the feature spaceZ to fully define

our model. In fact, C-BRUNO has the same set of assumptions as

its unconditional counterpart, but for completeness, we list them

below.

A1: dimensions {zd}d=1,...,D are independent, so p(z) =
∏D
d=1 p(z

d)
A2: for each dimension d, we assume that (zd1 , . . . z

d
n) ∼ Nn(0,Σd),
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where Σd is a n × n covariance matrix with Σd
ii = vd and

Σd
ij,i6=j = ρd with 0 ≤ ρd < vd.

Here we opted for using GPs instead of TPs as we noticed that

conditional image density models are easier to train compared

to unconditional models in Section 3.5.1, so the extra training

stability offered by TPs was redundant. A schematic of the full

C-BRUNOmodel and its workings is given in Figure 4.2.

z11 z21

x1
1 x2

1

h1

z12 z22

x1
2 x2

2

h2

z1 z2

x1 x2

h

p(x2|x1,h1:2) = p(z12|z11)p(z22|z12)
∣∣ det ∂z2

∂x2

∣∣p(x1|h1) = p(z11)p(z
2
1)
∣∣ det ∂z1

∂x1

∣∣
sampleGP predictive updates GP predictive updates

Real
NVP

Real
NVP

Real
NVP-1

Figure 4.2 A schematic of C-BRUNO unrolled for two update steps

and a sampling step. This illustrates how our model is able to

update, evaluate and sample from the predictive distribution,

which is now dependent on the vectorsh representing some labels

or tags.

4.4 Experiments

We consider the task of few-shot image reconstruction, where the

model is required to infer how an object looks from various angles

based on a small set of observed views [40]. This problem can

be framed as generating samples from a predictive conditional

distribution p(xn+1|hn+1,x1:n,h1:n), where hn+1 is a desired an-

gle and x1:n is a set of observed views associated with angles h1:n.

We use a set of 12 object categories from ShapeNetCore v2 [15]

as selected by Gordon et al. [40], and train C-BRUNO to predict

different views from a single shot. Namely, given a random view

x1 and its angle h1, the goal is to predict N views of the same

object under angles h1, . . . ,hN . Thus, the training objective is

to maximize the likelihood of ground-truth images under the
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model distribution, i.e. L =
∑N

n=1 log p(xn|hn,x1,h1). This loss
is optimizedwith respect to theRealNVPparameters and variance-

covariance parameters of the GPs. We train C-BRUNO in a batch-

mode on all 12 object classes at once and use the same train-test

split as Versa so that the two models are comparable.

In Figure 4.3, we show samples from C-BRUNO when the model is

given a single viewpoint of an object that was not seen during

training. In the majority of cases, our samples have correct

orientation and are visually sharper compared to samples from

Versa. The difference between the two models increases with

more uncertainty in the object’s appearance or when the object

is less similar to the training examples. In this case, C-BRUNO

generates samples with higher variance and more inaccuracies

while Versa samples become more blurry. In Figure 4.4, this is

illustrated for the airplane object. When a single shot is given,

from which we cannot infer the wing configuration, C-BRUNO

samples more diverse airplanes compared to when we condition

on multiple distinctive viewpoints. With more airplane shots, the

quality of Versa samples increases as well. However, as we can see

from the car example, this does not always hold, which might be

an indication thatVersa requires trainingwithmultiple input shots

in order to perform well in these testing conditions. C-BRUNO,

on the other hand, is more agnostic to the length of sequences it

is trained or tested on. More examples of generated images are

given in Appendix A.2.2.

C-BRUNO andVersa focus on different aspects of imagemodelling,

which complicates the quantitative comparison between the two

models in terms of image qualitymetrics. Namely,Versa generates

blurry images with negligible variability between samples drawn

from the same predictive distribution. Such images would be

favoured, for instance, by the mean squared error. C-BRUNO, on

the other hand, generates sharp samples with a number of inac-

curacies. Also, if we drawmultiple samples from the predictive

distribution of C-BRUNO, the resulting set of images will be more

diverse in comparison to those generated by Versa. Arguably,

it would be best to compare the two models with respect to

other applications, but when our goal is to synthesise images,

a subjective evaluation is generally viewed as appropriate [118].
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Figure 4.3 One-shot C-BRUNO samples in rows A-C and Versa

samples in row D for the unseen test objects. Here, we condition

on a single view (x1,h1) marked in red. The top row of each

plot contains ground truth images, whereas the three rows A to

C are the C-BRUNO samples from p(x|h,x1,h1) conditioned on a

different angle h in each column.
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Figure 4.4 C-BRUNO samples in rows A-C and Versa samples in

row D for the unseen test objects. Here, we condition on views

(x1:n,h1:n) marked in red. The top row of each plot contains

ground truth images, whereas the three rows A to C are the C-

BRUNO samples from p(x|h,x1:n,h1:n) conditioned on a different

angle h in each column.
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4.5 The bottleneck problem

As we mentioned in the previous chapter, hardware constraints

may limit our ability to train bigger models required for datasets

with large-size colour images. However, BRUNO and C-BRUNO

encounter more fundamental issues in low-dimensional data set-

tings. Experimentally this was observed when trying to model 3D

point cloud data [5]. To explain this conceptually, let us contrast C-

BRUNO toNPs. Unlike C-BRUNO,NPs donot use bijections, so they

canmapone or low-dimensional inputs to high-dimensional latent

spaces. In particular, one can choose the size of the latent variable

θ whose variational posterior q(θ|x1:n,h1:n) is parameterized by

the encoder network. A sufficiently large latent space allows NPs

to approximate, for instance, the distribution of functions drawn

from a GP with an exponentiated quadratic kernel. In C-BRUNO,

because of the bijection, one-dimensional inputs result in one-

dimensional latents, which makes for a powerless model. This

bottleneck problem of normalizing flows is a subject of ongoing

research. The fewexistingworks on this topic propose to construct

invertible models on the augmented input space, where data is

coupled with random noise or constant-valued dimensions [16, 27,

56]. We will follow a similar approach and base our explanation

on the existing derivations and terminology introduced by Huang

et al. [56].

In practice, the idea is simple: we concatenate an independent

noise variable ε ∼ N (0, I) to each input x, and model their joint

distribution p(x, ε). This amounts to a so-called augmented maxi-

mum likelihood estimation (AMLE). Maximizing Ex,ε[log p(x, ε)]
is equivalent to maximizing the lower bound on Ex[log p(x)]. To
show this for a single x, we can use the following reasoning [56]:

log p(x)− Eε∼q(ε)[log p(x, ε)] = −Eε∼q(ε)[log p(ε|x)]
= KL[q(ε)||p(ε|x)]− Eε∼q(ε)[log q(ε)].

Here, the term −Eε∼q(ε)[log q(ε)] is the entropy (ε) of our noise
distribution, which is constant. Moving it to the other side of the

equation and noting that KL-divergence is non-negative gives:

log p(x)−
(
Eε∼q(ε)[log p(x, ε)] +H(ε)

)
= KL[q(ε)||p(ε|x)] ≥ 0.
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Thus, the lower bound on the marginal log-likelihood equals to

Eε∼q(ε)[log p(x, ε)] +H(ε). Huang et al. [56] showed a correspon-

dence between the variational gap KL[q(z|x)||p(z|x)] as in VAEs

and KL[q(ε)||p(ε|x)] in the augmented Real NVPwith two coupling

layers: one serving as an encoder that transforms ε depending on
x into z, while the other decodes z. Having this augmentation gap

and not being able to directly compute the exact likelihood p(x)
would compromise the theoretical properties of BRUNO, which

heavily rely on a bijective mapping between X and Z. While

we think that using augmented flows as a part of BRUNO is not a

satisfactory solution, we do not have a better way of circumventing

the bottleneck problem. Nevertheless, as the experiments will

show, for some simple classes of distributions, our models remain

functional.

The augmented MLE objective does not change the training pro-

cedure of BRUNOmodels. From this perspective, it is neater than

in case of VAEs as we do not have to deal with a two-part loss

function or the reparameterization trick. For evaluation purposes,

whenever we need to compute the marginal likelihood, it can be

done using the importance sampling estimator [14]:

log p(x) ≈ log
1

K

K∑
k=1

p(x, εk)

q(εk)
,

where we draw i.i.d. samples of ε from the noise distribution.

When dealing with low-dimensional inputs, we will also replace

Real NVP with MAF [91] since the latter is more flexible and, in

our experience, more suitable for non-image data.

Experiments

To illustrate how C-BRUNO behaves with one-dimensional inputs,

we will look at a few toy problems. Firstly, let us consider a class

of functions x = a sin(2h) with a ∈ [0, 2] and h ∈ [−2, 2]. Being
able to model 1D predictive distributions p(xn+1|h1:n+1, x1:n)with
MAF requires us to augment the inputs with at least one noise
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variable ε ∼ N (0, 1), which results in a two-dimensional latent

space.

During training, we construct each sequence by sam-

pling a ∼ U(0, 2) and randomly choosing a number of

context points k, so that the AMLE loss amounts to

L =
∑N

n=1 p(xn, εn|x1:k, h1:k, ε1:k). At test time, we sample

from the predictive distribution and discard the noise dimensions.

Figure 4.5 illustrates the results of C-BRUNO,which are interesting

to compare to those of NPs in Figure 4.6, especially for the curves

outside of the training distribution. Details describing the

architectures of C-BRUNO and NPs are given in Appendix A.2.2.

In addition to changing the amplitude of the sine waves, we

can also experiment with the translation. For this problem, we

consider a class of functions x = 0.5 sin(h) + t, with t ∈ [−2, 2].
After training, both C-BRUNO and NPs can perfectly predict the

underlying sine curve if it comes from the training distribution.

However, for the values of t outside the [−2, 2] range, C-BRUNO
performs better than NPs. Examples of this behaviour are illus-

trated in Figure 4.7.

While C-BRUNO can succeed in these simple problems, it experi-

ences difficulties when learning to approximate the distribution of

functions drawn fromaGPwith an exponentiated quadratic kernel

k(x, x′) = σ2 exp
(
− (x−x′)2

2l2

)
, where we used l = 0.6 and σ = 1.

From Figure 4.8, it is clear that this problem is a better match

for NPs.

Even though our experiments illustrate that problems with low-

dimensional inputs may not the best niche for our model, in the

next chapter, we will again use C-BRUNO in 1D settings. There, we

will see how C-BRUNO helps to achieve competitive performance

in the downstream reinforcement learning tasks.
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Figure 4.5 1D regression results of C-BRUNO with a 2-D latent

space on the scaled sine problem. In blue, we plot the mean

and two standard deviations around the mean of samples from a

predictive distribution, where we condition on the context points

in black. The context length is 1, 10 and 100 for left, middle and

right columns respectively. Each row corresponds to a sine wave

x = a sin(2h) with a = {0.5, 1.5, 3}. The underlying ground truth

curve is given in black. For each case, we compute the mean

squared error (MSE) between the ground truth and our mean

prediction on 400 evenly spaced points between [−2, 2]. In the

bottom row, we plot the curve with a = 3, which is far outside

the range of amplitudes that were used during training (a ∈ [0, 2]).
Notwithstanding, the mean predictions of C-BRUNO remain rea-

sonable. This contrasts the behaviour of NPs in Figure 4.6. As to

the standard deviation of the predictive distribution of C-BRUNO,

we would expect it to be smaller when we condition on 10 and 100

input points. In some applications, such poor uncertainty quality

might be considered as a drawback.
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Figure 4.6 1D regression results of NPs with a 2-D latent space on

the set of test tasks from Figure 4.5. Notice how NPs behave in

comparison to C-BRUNO when presented with data outside the

training distribution, i.e. when a = 3 in the bottom row. We

can also observe an unusual behaviour of the standard deviation,

especially for the leftmost columnwhere the uncertainty is clearly

underestimated. The likely explanation is that in the authors’

implementation of NPs [63], which we used for these experiments,

the standard deviation of p(xn+1|hn+1,θ) is bounded from below

by 0.1, and the standard deviation of the posterior p(θ|x1:n, h1:n)
is limited to [0.1, 1] range. If we modify the code of NPs and allow

the standard deviation of p(θ|x1:n, h1:n) to be greater than 1, then
the standard deviation of the posterior predictive distribution

becomes more reasonable.
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(a) C-BRUNO

(b) NPs

Figure 4.7 1D regression results of C-BRUNO and NPs on the

translated sine wave problem. In blue, we plot the mean and

two standard deviations around the mean of samples from a

predictive distribution, where we condition on the context points

in black. The context length is 1, 10 and 100 for left, middle and

right columns respectively. Each row corresponds to a sine wave

x = 0.5 sin(2h) + t with t = {0.7, 3}. The underlying ground truth

curve is plotted in black. Note how the predictions of two models

differ for t = 3 – a value outside of the [−2, 2] range that was used
during training.
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(a) C-BRUNO

(b) NPs

Figure 4.8 Results of C-BRUNO and NPs with a 2-D latent space

on the GP regression problem. In blue, we plot the mean and two

standard deviations around themean of samples from a predictive

distribution, where we condition on the context points in black.

The context length is 1, 10 and 100 for left, middle and right

columns respectively. Each row corresponds to a curve drawn

from a GP, which is plotted in black. NPs clearly outperform

BRUNO, even though the expressive power of both models is

limited as a result of using a 2-D latent space. For C-BRUNO, we

could not find a regime where our model starts learning even the

general shapes of the curves. The reasons for such behaviour are

yet to be explored.
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4.6 Discussion and conclusion

In this chapter, we presented C-BRUNO – an extension of BRUNO

to the conditional case, which maintains its appealing properties,

such as (a) exact likelihoods (b) fast sampling and inference,

(c) no retraining or changes to the architecture at test time, and

(d) a recurrent formulation. These features constitute a powerful

meta-learning model with a flexible design. Together, BRUNO

and C-BRUNO cover a broad range of meta-learning applications

while performing on par with more task-specific state-of-the-art

methods. In particular, we showed how C-BRUNO can be used for

few-shot conditional image generation.

BRUNO and C-BRUNO build directly on the fundamental prop-

erty of exchangeability that underlies much of Bayesian statis-

tics. They provide an alternative way to building meta-learning

models by shifting away from the commonly used approximate

explicit Bayesian inference. BRUNOmodels combine compound

symmetry GPs with powerful bijective feature extractors in the

form of flow-based deep neural architectures. While the former

component is unlikely to be improved, we expect our models to

greatly benefit from the recent advances in normalizing flows,

which is currently an active area of research [41, 65]. This would

allow us to apply our models to more challenging datasets, thus

offering a simpler alternative to more complex models such as

GQNs [31].

Evenwith the current architecture, it would have been desirable to

compare C-BRUNO with GQN-like models on more involved tasks

such as reconstructing scenes in a roomwith a variety of objects in

different colours, shapes, textures and lights. However, for these

problems, models become prohibitively expensive, taking weeks

to train on a GPU [71]. While we did not conduct such experiments

ourselves, Hou et al. [55] evaluated C-BRUNO,GQNandC-VAE [113]

on the task of reconstructing 3D volumes from a few tomographic

slices – an important problem in medical imaging. Among the

three methods, only C-BRUNO was able to achieve satisfactory

results.

Extending NPs to GQNs, such that the model could work with im-

ages, is a non-trivial task. To the contrary, C-BRUNO experiences
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difficulties in the other direction. While we adapted C-BRUNO to

low and one-dimensional inputs, it came at a cost of sacrificing

the exactness of our approach. Still, in some of those tasks, C-

BRUNOwas not able to competewithNPs for the reasonswe do not

yet understand. However, we noticed surprising generalisation

abilities of C-BRUNO in comparison to NPs. In the future, it

would be interesting to pinpoint the source of these abilities, and

perhaps, combine the strengths of the two approaches. We also

hope that given the current amount of research into normalizing

flows, the bottleneck problem can be addressed in better ways

than augmentation.
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5
Conditional BRUNO for meta
reinforcement learning

In this chapter, wewill apply conditional BRUNO to the problem of

task inference in meta-RL settings. The goal and the challenges of

meta-RL differ from those of a few-shot image generation problem

which we focused on previously. However, the “meta” flavour

remains the same and so does the purpose of C-BRUNO: to infer

the task from a sequence of observations.

We begin this chapter from a brief introduction to reinforcement

learning, wherewe explain somenecessary concepts, terminology

and notation along with an outline of RL algorithms that will

be used. We then discuss the problem of meta reinforcement

learning and describe the existing approaches. Finally, we present

our method called BrunoSAC, in which an RL agent relies on

C-BRUNO for identifying the task that the agent is required to

solve. Backed by our experiments, we discuss the relevance of this

approach and ponder on the current state of meta-RL research.

5.1 Preliminaries

Key concepts in reinforcement learning

The goal of reinforcement learning is to devise agents that can

learn to behave optimally in an unknown environment. Here, an
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agent is a decision-maker that needs to choose actions depending

on the state of the environment – an entity that the agent interacts

with and whose inner workings are unknown to the agent. As

a result of its actions, the agent receives a reward, and the en-

vironment transitions to a new state. Figure 5.1 illustrates this

process. The agent’s objective is to maximize a cumulative reward

by optimizing its policy – the agent’s strategy of selecting actions.

We will proceed by presenting these notions more formally.

Agent

Environment

action
at

state
st

reward
rt

rt+1

st+1

Figure 5.1 The agent–environment interaction process.

A Markov decision process (MDP) is a mathematical basis for

describing the RL framework. The main components of MDPs

are:

• a set of states S

• a set of agent’s actionsA

• a transition function T = p(st+1 = s
′|st = s,at = a), which

is a probability of transitioning into state s′ when executing

an action a in state s at time step t. Given a present state

st, the independence on the past states is called a Markov

assumption – a property that MDP owes its name to.

• a reward functionR = p(rt+1 = r|st = s,at = a, st+1 = s
′),

which is a probability of receiving a reward r after transi-
tioning from s to s′ due to taking an action a.

An MDP represents the fully-observed scenario, where the agent

has access to the environment’s state. However, in many real-

world processes, the agent only gets an incomplete description

of the state, a so-called observation o, which is sampled from the

emission probability p(o|s). This generalization of the MDP is

called a partially observable MDP (POMDP).
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We will consider the episodic MDP setting, where the process of

acting in the environment can be terminated and started again

from a new state sampled from a start-state distribution p(s0).
An episode is terminated, for example, when a certain state or a

maximum number of steps is reached. A sequence of states and

actions (s0,a0, s1,a1, . . . ) collected within an episode is called a

trajectory or a rollout.

A cumulative reward within an episode is called a return, which

is defined as R =
∑H

t=0 γ
trt. Here, γ is a discount factor between

0 and 1. Intuitively, the discounting reflects the fact that we

wish to achieve rewards as early as possible. For example, if the

agent’s goal is to arrive at a certain destination, we prefer it to take

the shortest path and reach its goal sooner. The discount factor

also makes sure that the sum converges to a finite value when

H =∞.

As we mentioned earlier, the core problem in RL is to find a good

policy – a rule to choose actions depending on states. There

are two types of policies: stochastic and deterministic. The

former one is a conditional probability of actions given states:

p(at|st), usually denoted as π(at|st). At every step t, the agent can
sample an action from this policy, i.e. a ∼ π(at|st), and execute

a. One can obtain a deterministic policy from a stochastic one,

for instance, by letting at = argmaxat
π(at|st). In general, a

deterministic policy can be defined by any mapping from states

to actions: at = µ(st).

Finding a good policy is difficult because the environment is un-

known: the agent does not know transition and reward functions.

Therefore, it needs to acquire some form of this knowledge by

interactingwith the environment and learning from its experience.

Learning about the environment most likely requires choosing

suboptimal actions, which is often not aligned with the goal of

maximizing the returns. As a consequence, the exploration vs.

exploitation dilemma arises [115]: how do we trade off between

taking the road less travelled anddoingwhatwe currently consider

as the most rewarding option. On top of that, there is another

challenge: if we receive rewards after performing a sequence of

actions, how do we decide which actions were responsible for the

end results. This is the so-called credit assignment problem [115].
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We do not encounter any of such issues in supervised and unsu-

pervised learning, thus RL requires a different treatment, which

we will introduce further.

Our goal is to find an optimal policy π∗ that maximizes returns

averaged across possible trajectories. A trajectory is a random

variable, which we will denote as τ . Its probability depends

on the chosen policy π and the environment’s transition

function, so for a trajectory of H steps, we can write that

p(τ |π, T ) = p(s0)
∏H−1
t=0 p(st+1|st,at)π(at|st). Then the expected

return over trajectories equals to:

J(π) = Eτ∼p(τ |π,T ),r∼R

[H−1∑
t=0

γtrt

]
. (5.1)

In the next section, we will look at some general approaches to

the RL problem of maximizing this expected return.

Reinforcement learning algorithms

A general principle behind the construction of RL algorithms is

that of alternating learning steps with executing the policy on the

environment. During policy execution, we let the policy interact

with the environment to collect trajectories and rewards. The

learning steps then use the collected data to improve the policy.

The RL algorithms used for the learning step can be roughly

divided into two classes: model-based and model-free. In the

former case, we estimate the transition and reward functions of

the environment based on the collected experiences. Using the

model of the environment, the agent can then plan its actions.

Planning refers to the process of taking the model as an input

and producing or improving a policy [115]. For instance, using

transition and reward probabilities given by the model, we can

estimate the expected return for any sequence of actions, which

allows us to choose a sequence for which it is maximized.

Model-free methods do not rely on having a model but use ex-

periences generated by the environment to directly learn the

policy or some quantities that guide the choice of a policy. The
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boundary separating model-based frommodel-free approaches

can sometimes be vague. In either case, we will focus on a few RL

methods that do not require modelling the transition and reward

functions.

As an example, let us consider a parametric policy πφ and use a

gradient ascent method to find φ such that φ∗ = argmaxφ J(πφ).
From the data collected during the policy execution step, the

returns are estimated. These returns are then used to compute

the gradient of our objective function with respect to φ. In

the simplest version of this algorithm, these gradients can be

prohibitively noisy, thus impeding learning and making us seek

improvements.

Our desire is to have a reliable estimate of the expected return ifwe

start from an arbitrary state s and follow a policy π. This is done

by learning a value function: V π(s) = Eτ∼p(τ |π,T )

[
R(τ)|s0 = s

]
.

Here, we denoted the return asR(τ), and from now on, the expec-

tation with respect to the distribution of rewards will be implicit.

In addition to the value function, it is also useful to have an action-

value function: Qπ(s,a) = Eτ∼p(τ |π,T )

[
R(τ)|s0 = s,a0 = a

]
. This

Q function gives an expected return if we start in the state s, take
an actiona, and only afterwards follow the policy π. The following
relationship between the value and action-value functions should

be evident: V π(s) = Ea∼π[Qπ(s,a)].

Both value and action-value functions obey the Bellman equa-

tions:

V π(s) = Ea∼π,s′∼T

[
r(s,a, s′) + γV π(s′)

]
,

Qπ(s,a) = Es′∼T

[
r(s,a, s′) + γEa′∼π[Q

π(s′,a′)]
]
.

(5.2)

These equations form the learning objectives for the value and

action-value functions. Namely, if we start from arbitrarily initial-

ized Qπ(s,a) and V π(s), our goal is to make Bellman equations

hold by trying to match the right-hand sides to their targets on

the left like in an ordinary supervised regression task. Updates

of the value and action-value functions can be done using either

(s,a, r, s′) transitions that were collected during any of the policy

execution steps or only from the last policy execution step. The
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choice between these two options makes for an off-policy or an

on-policy method respectively.

Knowledge of the value or the action-value functions can assist

in updating the policy. In a group of actor-critic methods, either

V π(s) orQπ(s,a) can serve as a critic that needs to evaluate and

guide the policy πφ, here referred to as the actor. Further, we will

describe in details a popular instantiation of this approach called

soft actor-critic (SAC), which will be used as a part of our meta-RL

method.

Soft Actor-Critic

SAC [45, 46] is an off-policy RL algorithm that optimizes a stochas-

tic parametric policy. It is commonly used for environments with

continuous actions. In this case, the policy can be modeled by

a factorized Gaussian whose mean and variance are the outputs

of a neural network that receives states s as an input. We can

write it as πφ(a|s) = N (µφ(s),σ
2
φ(s)I), where φ is a set of

network’s parameters. During training, the actions are sampled

from πφ(a|s), while at test time the deterministic policy is used

with a = µφ(s).

SAC is one of the methods implementing a maximum entropy

RL approach, where the agent not only trains to maximize the

expected return but alsomaximize the entropy of the policy, which

amounts to acting as randomly as possible. This has beenobserved

to improve robustness and exploration [32, 139].

As a maximum entropy RL algorithm, SAC aims to maximize the

following objective:

J(π) = Eτ∼p(τ |π,T ),r∼R

[H−1∑
t=0

γt
(
rt + αH

(
πφ(·|st)

))]
.

In comparison to the classic RL objective in Eq. 5.1, we see an

additional termH
(
πφ(·|st)

)
= −Ea∼πφ(a|st)

[
logπφ(a|st)

]
, which

is the entropy of the policy at current step. The temperature

parameter α weights how important it is to maximize the entropy
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compared to the rewards. With the change in the objective, value

andQ-value functions are modified accordingly:

V π(s) = E
τ∼p(τ |π,T )

[H−1∑
t=0

γt
(
rt + αH

(
πφ(·|st)

))
|s0 = s

]
,

Qπ(s,a) = E
τ∼p(τ |π,T )

[H−1∑
t=0

γtrt + α

H−1∑
t=1

γtH
(
πφ(·|st)

)
|s0 = s,a0 = a

]
.

In this definition of theQ-function, the entropy term is added to all

the rewards except for the first one. This results in the following

relation between the value and action-value functions:

V π(s) = Ea∼πQπ(s,a) + αH
(
πφ(·|s)

)
= Ea∼π

[
Qπ(s,a)− α logπφ(a|s)

]
.

(5.3)

Thus, if we learn theQ-function by minimizing the Bellman resid-

ual constructed based on Eq. 5.2, then the value function can be

trained by trying to match the two sides of Eq. 5.3. Given that both

V andQ are modelled by neural networks with their parameters

ψ and ξ, the two losses with respect to these parameters are:

LV (ψ) = E
st∼D

[
1

2

(
V π
ψ (st)− E

at∼π

[
Qπξ (st,at)− α logπφ(at|st)

])2
]

LQ(ξ) = E
st,at∼D

[
1

2

(
Qπξ (st,at)−

(
rt + γ E

s′t∼T

[
V π
ψ (s

′
t)
]))2

]
.

Here, the outer expectation is taken over states and actions

sampled from a replay buffer D, which stores past transitions

(s,a, r, s′) generated by policies that existed earlier on during

training. This is a defining feature of the off-policy methods. In

the expression for LV , the expectation with respect to actions

is estimated by sampling one action from the current policy.

Similarly, a single s′t that corresponds to (st,at) is taken from the

replay buffer to estimate the inner expectation in the expression

for LQ.

To learn the policy, we can use the fact that the optimal policy

maximizes the value function in each state. Thus, taking the
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definition of the value function from Eq. 5.3, we can write down

the loss with respect to policy parameters φ:

Lπ(φ) = −Est∼D,at∼πφ

[
Qπξ (st,at)− α logπφ(at|st)

]
. (5.4)

In Section 2.3.2 on VAEs, we have seen the reparameterization

trick – a way of dealing with objectives whose derivative we need

to take with respect to parameters that appear in the distribution

over which the expectation is taken. In this case, such parameters

are φ. Using the trick, we can represent actions as a deterministic

function of a Gaussian noise ε as at = gφ(st, ε). Instead of Eq. 5.4,

we can then optimize the following loss:

Lπ(φ) = −Est∼D,ε∼N (0,I)

[
Qπξ
(
st, gφ(st, ε)

)
−α logπφ

(
gφ(st, ε)|st

)]
.

Given the losses for the critics and the actor, the training proceeds

as described in Algorithm 1. Here, we explained the backbone of

SAC that does not include tricks for improving training stability.

Neither did wemention a formulation that allows to automatically

tune the temperature parameter α [45]. While in practice we

implemented the elaborate version of SAC, its detailed explanation

would be excessive for the purpose of this thesis.

5.2 Meta reinforcement learning

Meta-learning intends to bridge the gap between machine and

human learning by designing algorithms that acquire prior knowl-

edge from a multitude of training tasks and use these priors for a

rapid adaptation to new tasks. In reinforcement learning, this goal

is translated into building agents able to adjust their policies to new

environment settings after a handful of environment interactions

andwith little or no retraining. To give an example, let us consider

a problem in which an agent is rewarded for reaching a certain

point on a plane. If the location of the point is fixed, this is a

standard RL problem dealing with a single MDP. For meta-RL, we

can define multiple MDPs by changing the target location and

say that each MDP corresponds to a different task. Note that the

agent does not know the target location, and so it can only rely on

78



5.2 Meta reinforcement learning

Algorithm 1 Soft Actor-Critic

Initialize parameters ψ, ξ,φ and create a replay buffer D = ∅
for each iteration do

% policy execution
for each environment step do

at ∼ πφ(at|st)
s′t ∼ p(s′|st,at)
rt ∼ p(r|st,at, s′t)
D ← D ∪ (st,at, rt, s

′
t)

end for

% learning steps
for each gradient step do

ψ ← ψ − λV∇ψLV (ψ)
ξ ← ξ − λQ∇ξLQ(ξ)
φ← φ− λπ∇φLπ(φ)

end for

end for

the rewards when trying to choose which direction to move. By

training the agent on a number of such tasks, we want it to gain

the ability to adapt to new settings of the target location.

Vanilla RL algorithms, designed to deal with a singleMDP at a time,

are inept for themeta-RL problem. The latter can be formulated as

a special case of POMDP: one in which only the task specification

is hidden from the agent. However, as we had in the example

above, each task on its own can be described by an MDP. Thus,

how can we adapt RL agents to these conditions? Further, we will

look into a few general approaches to this problem.

One approach to meta-RL proposed by Duan et al. [25] andWang

et al. [130] is based on the idea of representing policies using

RNNs. Here, the input to the policy πφ is not only state st at a
current step t, but also actions and rewards from the previous

step t− 1. In this way, the recurrent policy implements a proba-

bility of taking actions conditionally on the past transitions, i.e.

πφ(at|s0:t, r0:t−1,a0:t−1). Here, the knowledge of history is what

allows us to implicitly infer the task. Training of the policy can be

done via any standard RL algorithm, which is referred to as “slow”

RL since it requires large amounts of training data. Then the “fast”
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RL part, which is responsible for quick adaptation to new tasks,

gets encoded in the dynamics of the RNN. This dynamics can be

viewed as an RL algorithm on its own [13].

Optimisation-based methods comprise another prominent group

in meta-RL [34, 100, 114]. Their idea is to learn initial parameters

φ0 of a policy πφ such that a few gradient updates are needed

for φ0 to obtain a policy adapted for a new task. These methods

typically work with non-recurrent policies, so they are lighter

compared to RNN-based methods.

Finally, a group of methods that includes our BrunoSAC is based

on the idea of separating the algorithm into inference and acting

modules [58, 94, 140]. The former is responsible for inferring the

task from a sequence of interactions, while the latter needs to

choose actions conditionally on the results of inference. This is

motivated by the Bayesian approach to solving the special case

POMDPwe talked about earlier, which in this context is also known

as the Bayes-adaptive MDP (BAMDP) [26]. In the next section, we

will describe this approach in greater details on the example of

BrunoSAC. Related methods will be reviewed in Section 5.4.

5.3 BrunoSAC

As we said, our BrunoSAC method will follow the approach of

separating inference and control. The task of the inference

module is to maintain a belief state over what the underlying

MDP might be. As in most problems, we assume that MDPs have

the same action and state spaces but different transition and/or

reward functions. Thus, the belief can be equivalently formulated

over MDP’s transition and reward functions. At any given step

t, this belief is a posterior distribution p(T ,R|s0:t,a0:t, r0:t, s′0:t),
where we condition on previously observed transitions within

a trajectory. Alternatively, we can reason in terms of beliefs

p(θ|s0:t,a0:t, r0:t, s′0:t) over a latent variable θ that encapsulates

task specification and thus determines which MDP we are in,

i.e. T = p(s′|s,a,θ) and R = p(r|s,a, s′,θ). In either case, the

posterior is often intractable.
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VAEs [66] have been previously adapted to approximate the belief

state [140]. Here, we explore an alternative way of doing so with C-

BRUNO. In the previous chapter, we constructedC-BRUNOwithout

a reference to the posterior, so wewill have to revise an alternative

formulation from Section 3.4 before we can turn C-BRUNO into a

full-fledged replacement to VAEs in meta-RL. With the addition

of minor architectural changes, we use C-BRUNO in conjunction

with SAC to get a competitive meta-RL algorithm, which we called

BrunoSAC to reflect its two-parts nature. Based on a couple of

benchmarks, we show that our method is sample efficient, fast

and easy to train, and it can adapt to the test tasks given a small

number of observations.

In the next few parts, we will explain the ways in which the

exchangeability assumption fits into the MDP framework, how to

compute the posterior over θ using C-BRUNO, what architectural

changes are needed tomake C-BRUNOworkwith low-dimensional

inputs, and finally, how to combine all of these ideas together with

SAC into a single meta-RL agent.

Exchangeability in MDPs

When applying BRUNO to a new problem, the first question we

need to ask ourselves is whether it is reasonable to assume ex-

changeability of the variables we wish to model. Let us, therefore,

revise the concept of exchangeability and see how it is applicable

for the case ofMDPs. In particular, we are interested in regression

exchangeable processes as described in Section 4.1.

For a stochastic process x(h0),x(h1),x(h2), . . . , where in statis-

tical terms, x is a dependent and h is an independent variable,

regression exchangeability amounts to:

p(x0, . . . ,xn|h0, . . . ,hn) = (5.5)

p
(
xπ(0), . . . ,xπ(n)|hπ(0), . . . ,hπ(n)

)
,

which holds for any finite n and any permutation π of {0, . . . , n}.

In MDPs, we deal with sequences of state-action-reward-state

transitions (s0,a0, r0, s
′
0), (s1,a1, r1, s

′
1), . . . . As we will explain

81



Chapter 5

shortly, it is reasonable to assume that these transitions form a re-

gression exchangeable process with hi = (si,ai) and xi = (ri, s
′
i)

if we use the notation from Eq. 5.5. de Finetti’s theorem would

then give:

p(rt+1,s
′
t+1|st+1,at+1, τ0:t) = (5.6)∫
p(rt+1, s

′
t+1|st+1,at+1,θ)p(θ|τ0:t)dθ,

where τ0:t = {(s0,a0, r0, s′0), . . . , (st,at, rt, s′t)} denotes all ob-

served transitions up to step t either in their natural or in a

permuted order. The former assumes that s′t = st+1, while this

is not necessarily true for the latter. Here, we also switched to

indexing the variables using t instead of n, which is amore natural

notation for RL.

Using de Finetti’s theorem we can reason out why regression

exchangeability of (r, s′) given (s,a) is a valid assumption. This

theorem allows us to think about exchangeable processes as

sequences of random variables that are i.i.d. conditionally on

an underlying latent factor, which we denoted by θ. In our case,

θ encapsulates the knowledge of the MDP with its reward and

transition functions. Then, given θ, and conditionally on (s,a),
(r, s′) become i.i.d.. This conditional independence might still

seem unintuitive, especially since we often think of (s,a, r, s′)
transitions in the order they appear in a trajectory. Therefore, it

is important to additionally remember the Markov property and

note that the current state s is always the conditioning event.

If we wish to model the distributions involved in Eq. 5.6 using

VAE-based models, such as neural processes [37], we need to

approximate the posterior p(θ|τ0:t) and derive a lower bound

on log p(rt+1, s
′
t+1|st+1,at+1, τ0:t). C-BRUNO, on the other hand,

can directly model this predictive distribution by constructing a

suitable exchangeable process while ignoring the integral on the

right-hand side. A corresponding schematic is given in Figure 5.2.

Note, that by learning to predict rewards and next states, we effec-

tively learn to model the environment as one would do in model-

based meta-RL [103]. While we could use a planning algorithm

on the trajectories generated by C-BRUNO, this is different from

the approach we intended to follow. Thus, having established
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the validity of the exchangeability assumption and suitability of

C-BRUNO, we can now turn to the next point on our list – the

problem of computing the posterior distribution p(θ|τ0:t).

z10 z20

r0 s′0

s0,a0

z11 z21

r1 s′1

s1,a1

p(r1, s
′
1|r0, s′0, s0:1,a0:1) = p(z11|z10)p(z21|z20)

∣∣detJMAF(s1,a1)

∣∣p(r0, s
′
0|s0,a0) = p(z10)p(z

2
0)
∣∣ detJMAF(s0,a0)

∣∣

MAF MAF

GP predictive updates GP predictive updates

Figure 5.2 A schematic of C-BRUNO for modelling the predictive

distribution of rewards and next states in an MDP. The figure

illustrates how to update the prior and the predictive distribution

in the feature space Z of the bijective neural network, and how

to evaluate the predictive distribution at a particular (r, s′) input
using the change of variables formula. Though it is not depicted

here, sampling of rewards and next states from the predictive

distribution is also possible.

Posterior computation

In the notation of C-BRUNO, the posterior p(θ|τ0:t) corresponds
to p(θ|x0:t,h0:t), where we set x = (r, s′) and h = (s,a). The

main derivation of C-BRUNO makes no reference to this pos-

terior, however it exists in the alternative formulation as we

showed in Section 3.4. In brief, the use of a bijective mapping

and independent dimensions in Z implies that p(θ|y0:t,x0:t) =
p(θ|z0:t) =

∏D
d=1 p(θ

d|zd0:t). Thus, we only need an expression for

the univariate posterior p(θd|zd0:t). Further, we will drop the index

d since the same equations hold for every dimension in Z, but
note that a GP associated with a d-th dimension has its own values

of v and ρ that parameterise the GP’s kernel matrix. Themean and

variance of the Gaussian posterior p(θ|z0:t) are given in Eq. 3.4,

for which we also have the following recurrent updates as derived
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in Appendix A.1.4:

µt+1 = (1− dt)µt + dtzt

σ2t+1 = (1− dt)(σ2t − v + ρ),
(5.7)

with dt =
ρ

v+ρ(t−1) , µ0 = 0 and σ20 = ρ.

It implies that within one C-BRUNOmodel, we have two types of

recurrent updates: one for parameters of the posterior predictive

distribution p(rt+1, s
′
t+1|st+1,at+1, τ0:t), and one for parameter

of the posterior p(θ|τ0:t). Fortunately, the equations are almost

identical, i.e. the means of two distributions are equal, and their

variances differ by a constant. Thus, computing the posterior in

addition to the predictive posterior incures no additional costs on

the part of GPs.

Combining C-BRUNO and SAC

We can now combine the modified C-BRUNO model with a soft

actor-critic into a meta-RL algorithm. Most of our choices re-

semble those used in VariBAD [140], PEARL [94] and Belief [58] –

methods that will be discussed in the next section.

The crux of BrunoSAC is to have the SAC policy depend on pa-

rameters of the posterior distribution p(θ|τ0:t) given by BRUNO.

As we showed, this posterior is a multivariate Gaussian with

independent dimensions, so it can be described by its mean and

variance parameters: mθ
t = {µt,σ2

t }. Having observed t ≥ 0
transitions, the agent can sample an action froma stochastic policy

conditioned on a state s and current posterior parametersmθ
t ,

i.e. a ∼ πφ(s,m
θ
t ). This process is illustrated in Figure 5.3 and

explained in Algorithm 2.

Training of BrunoSAC

Training of BrunoSAC can bewell separated into learning tomodel

the environments with C-BRUNO and learning the actor-critic

functions of SAC. To be precise, the gradients of SAC losses are not

propagated through parameters of C-BRUNO, even though these
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Figure 5.3 Policy roll-out in BrunoSAC.

Algorithm 2 BrunoSAC policy roll-out

sample the initial state s0
setmθ

0 = [0, . . . , 0, ρ1, . . . , ρD] – parameters of the prior p(θ)
initialise τ = ∅
for t← 0 toH do

at ∼ πφ(at|st,mθ
t )

s′t ∼ p(s′|st,at)
rt ∼ p(r|st,at, s′t)
τ ← τ ∪ (st,at, rt, s

′
t)

st+1 ← s′t
mθ

t+1 ← update(mθ
t , (st,at, rt, s

′
t))

end for

parameters directly influence the policy viamθ
t . Nevertheless,

updates of bothmodules are done in parallel, except that we allow

for a short pre-training of C-BRUNO on data from a random policy,

i.e. πrandom(at|st) = U(amin,amax), where actions are sampled

uniformly within A. The pre-training helps to makemθ
t more

meaningful before the SAC policy starts using it.

To construct training sequences for C-BRUNO and SAC, we use

a single replay buffer filled with off-policy data. We create each

sequence τ by sampling (s,a, r, s′) transitions that come from the

same MDP but not necessarily from the same trajectory. Since

the design of the meta-training stage is under the researchers’

control, we know which transitions belong to which MDPs. Such
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information is considered privileged, meaning that it can be used

to facilitate training, but it is unavailable at test time [58].

Given a sequence τ0:H−1 of H transitions, the objective of C-

BRUNO is to maximize the likelihood of each observed (rt, s
′
t)

given (st,at) and a part of the sequence up to step k. In other

words, the goal is to “decode” both past and future transitions with

respect to k. In this case, the loss can be written as:

LBruno(ω) = −
1

H

H−1∑
t=0

log p(rt, s
′
t|st,at, τ0:k), (5.8)

where ω denotes weights of MAF and variance-covariance param-

eters of the GPs, i.e. vd and ρd for d = 1, . . . , D . Ideally, one

would sample a random k for every training sequence, however,
we found that sampling k per batch of sequences or even choosing

a fixed k works well in practice.

Given the nature of the meta-RL problem, there is a certain

flexibility in choosingwhat tomodel. For example, if we know that

MDPs differ only with respect to their reward function R, then
we can safely withhold frommodelling the next state distribution

T since it does not contribute any information to our posterior

that could help the policy to identify the task. However, once we

are left with predicting scalar rewards, the bottleneck problem

becomes acute, and so we need to use the augmented input space

as described in Section 4.3.

Training of the policy in BrunoSAC becomes more involved in

comparison to the original SAC algorithm, which is a result of

having to deal with a recurrent policy. While our policy is not

explicitly an RNN, it can be still viewed as one. To see this, we can

consider the policy πφ(s,m
θ
t ) as a fixed transformation on top of

the statemθ
t , which is updated recurrently according to Eq. 5.7.

Critic functions, on the other hand, can be conditioned on the true

task ID or task specification θ instead ofmθ
t , which turns them

into simple feed-forward neural networks. Not taking advantage

of this information would make the training needlessly harder. In

either case, whether we condition on the value of θ or the beliefs
over θ, critic functions are discarded at test time.
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According to the choices we made above, for a single

sequence τ0:H−1 from the replay buffer, whose transitions

(s0,a0, r0, s
′
0), . . . , (sH−1,aH−1, rH−1, s

′
H−1) come from the same

MDP as specified by θ, we can write the SAC losses as follows:

LV (ψ) =
1

2H

H−1∑
t=0

[
V π
ψ (st,θ)− V̄t

]2
with

V̄t = E
at∼πφ

(
st,mθ

t (τ0:t)
)[Qπξ (st,at,θ)− α logπφ

(
at|st,mθ

t (τ0:t)
)]
,

LQ(ξ) =
1

2H

H−1∑
t=0

[
Qπξ (st,at,θ)−

(
rt + γV π

ψ (s
′
t,θ)

])]2
,

Lπ(φ) = −
1

H

H−1∑
t=0

E
at∼πφ

(
st,mθ

t (τ0:t)
)[Qπξ (st,at,θ)−
α logπφ

(
at|st,mθ

t (τ0:t)
)]
.

The description of the core training procedure of BrunoSAC is

given in Algorithm 3.

5.4 Related work

In this section, we will focus on Belief [58], PEARL [94] and

VariBAD [140] – three methods that are most directly related to

ours. Like BrunoSAC, they implement the approach of condi-

tioning the policy on results of the task inference. Their main

differences can be identified by asking the next questions:

1. how is privileged information, i.e. task IDs or specifications,

used during meta-training?

2. what type of model is used to process sequences of transi-

tions?

3. what information from the inference module is passed on

to the policy and, optionally, to the value functions?
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Algorithm 3 BrunoSAC training

training tasks {Tn}n=1,...,Ntasks

replay buffers {Dn = ∅}n=1,...,Ntasks

for i← 1 toNiter do

% policy execution
for each Tn do
if i > Npretrain then

roll out the policyπφ forH steps by followingAlgorithm2

else

roll out the random policy πrandom forH steps

end if

Dn ← Dn ∪ {(st,at, rt, s′t)}t=0,...,H−1

end for

% learning steps
for j ← 1 toNupdates do

% collect a batch of losses
for b← 1 toNbatch do

n ∼ U(1, Ntasks)
τ ∼ Dn
compute LbBruno(ω), L

b
V (ψ), LbQ(ξ), Lbπ(φ) given τ

end for

% model updates

ω ← ω − λBruno∇ω
(

1
Nbatch

∑
b LbBruno(ω)

)
% actor-critic updates
if i > Npretrain then

ψ ← ψ − λV∇ψ
(

1
Nbatch

∑
b LbV (ψ)

)
ξ ← ξ − λQ∇ξ

(
1

Nbatch

∑
b LbQ(ξ)

)
φ← φ− λφ∇φ

(
1

Nbatch

∑
b Lbπ(φ)

)
end if

end for

end for
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4. which RL algorithm is used?

In what follows, we will answer these questions for each of the

methods.

Belief uses a supervised approach to learn the belief state. Namely,

the inference network is trained to directly predict the task de-

scription or its ID given a trajectory. To process the trajectories,

Belief uses an LSTM-based architecture [52]. Features from the

penultimate layer of this model are passed to the actor and critics

of an off-policy SVG(0) [48] or an on-policy PPO [108] RL algorithm.

The off-policy method is concluded to be preferable for its sample

efficiency.

PEARL is identical to BrunoSAC with respect to how it groups

transitions according to their tasks. Moreover, it makes simi-

lar exchangeability assumptions and constructs a permutation-

invariant inference network for p(θ|τ0:t), though based onVAEs, in

the same way as NPs would do. While PEARL allows for a decoder

that could predict future states and rewards, the authors prefer

to predict q-values instead. The policy is trained with SAC, where

both policy and the critics are conditioned on samples from the

posterior distribution p(θ|τ ). Using samples is perhaps the reason

why PEARL needs a lot more transitions before converging to a

reasonable behaviour at test time, while somemethods adapt after

very few steps.

VariBAD uses no privileged information during training andworks

based on trajectories. To process them, VariBAD applies VAEs

with a recurrent neural network as an encoder and an MLP

decoder that predicts past and future rewards r and states s′.
Parameters of the posterior distribution are supplied to the policy

and critics of PPO. Since PPO is an on-policy method, VariBAD

is sample inefficient. Combined with a slow recurrent encoder,

this increases the training time of VariBAD in comparison, for

instance, to PEARL.

To conclude, each of these methods makes different design

choices, whose compatibility, in our opinion, is sometimes

unjustified. The reason is that they trade off some desirable

properties such as simplicity of the implementation, sample

efficiency, fast adaptation at test time or short training times.
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BrunoSAC is, therefore, our attempt in combining elements that

we think are most sensible with respect to the above criteria.

5.5 Experiments

We applied BrunoSAC to two popular meta-RL benchmarks in-

troduced by Finn et al. [34]: Cheetah-Dir and Cheetah-Vel. Both

benchmarks are based on the simulated half-cheetah robot [121]

shown in Figure 5.4. The 18-dimensional state space of the half-

cheetah is described by positions, angles and velocities of its joints

and the spine. One of the dimensions that corresponds to the

horizontal position of the spine is unobserved. However, since

the problem is invariant under the translation of the horizontal

position, half-cheetah remains a fully observable environment.

The action space is 6-dimensional, and every action applies torque

to each of the 6 hinge joints. One peculiar fact about the half-

cheetah robot is that its body is better suited for running backward

rather than forward.

Figure 5.4 MuJoCo-simulated half-cheetah environment.

In the Cheetah-Dir benchmark, the robot needs to run as fast

as possible either forward or backward. Thus, the rewards are

given by the magnitude of the velocity in either direction. The

two directions define the only two tasks, so we use them both

during training and testing. While such setup is not ideal in terms

of estimating the agent’s abilities to adapt to the unseen tasks,

Cheetah-Dir is still a difficult problem that cannot be solved by

RL algorithms with non-recurrent policies. On the other hand,
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Cheetah-Vel does have a different set of tasks for training and

testing. Here, in each task, the robot needs to run with a certain

velocity. Thus, the reward is calculated as the negative absolute

difference between the current and target velocities. There are

100 train and 30 test tasks with target velocity sampled once from

U(0, 3). Such settings were previously used in PEARL andVariBAD.

However, wewill not directly compare thesemethods to BrunoSAC

since a fair comparison is only possible if all three methods run

under the same conditions. In either case, we will try to relate our

results to those of PEARL and VariBAD when it is meaningful to

do so.

Before we look at the results of BrunoSAC, let us discuss several hy-

perparameter choices. During training, we roll out the trajectories

of lengthH = 200, however, it does not oblige us to trainBrunoSAC

on sequences of the same length. In our experiments, we used

sequences of 100 transitions, and for every batch of sequences, we

sampled k from U(25, 75) to compute the loss in Eq. 5.8. Since in

Cheetah-Dir and Cheetah-Vel the states transition function is the

same across all tasks, we train BRUNO to predict only the rewards.

In order to use MAF, we add 4 extra Gaussian noise dimensions,

which results in having a 5-dimensional latent space for θ. A

complete list of hyperparameters is given in Appendix A.2.3.

In Figure 5.5 we plot learning curves of BrunoSAC and oracle

SAC on the Cheetah-Dir benchmark. The oracle has its policy

conditioned on the true task specification, i.e. one-hot encoding

of the forward-backward direction. We see that after around

500 thousand collected transitions, BrunoSAC starts matching

the oracle’s performance, which could only mean that tasks are

inferred correctly. To our best estimate, this is at least an order

of magnitude fewer steps than required for PEARL and VariBAD,

which respectively need to train for 24 hours and 48 hours as

reported by Zintgraf et al. [140]. For comparison, it takes about 8

hours to train BrunoSAC on a laptop CPU.

Figure 5.6 plots the learning curves of BrunoSAC and oracle SAC

for the Cheetah-Vel problem. Here, the oracle SAC is trained on

30 test tasks, and its policy is conditioned on scalar target velocity.

From the figure, we see that BrunoSAC closely approaches the

performance of the oracle. For a rough comparison, VariBAD
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requires twice as many environment steps to catch up with the

oracle, while PEARL needs a bit more than a million steps, which

is surprising since it amounts to learning only from 50 trajectories

per training task.

Figure 5.5 Cheetah-Dir test returns versus the number of envi-

ronment interactions during training. Returns are averaged over

10 trajectories per task. Shaded areas represent minimum and

maximum returns of BrunoSAC. Each trajectory is 200 steps long.

Returns from the two tasks are plotted separately to illustrate the

asymmetry between learning how to run forward and backward.

Figures 5.7 and 5.8 plot the rewards obtainedbyour trainedmodels

when we roll out policies on the test tasks. Similarly to VariBAD,

but unlike PEARL, our model requires little observations to infer

what the task is and to adapt its behaviour accordingly.

One finding we would like to highlight is that we get good per-

formance regardless of whether we condition the policy on the

posterior mean and variance or the mean alone. The redundance

of variance indicates that cheetah benchmarks are not suited for

exploring the role of uncertainty over tasks. We also admit that

the variance we have in our model is inadequate since it does not

depend on the data. In future, Student-t processes should be used

instead of GPs.
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Figure 5.6 Evolution of the Cheetah-Vel test returns during train-

ing. The returns are averaged over 150 trajectories (5 trajectories

per test task) with each trajectory having 200 steps. Shaded areas

represent minimum and maximum returns of BrunoSAC.

Figure 5.7 Cheetah-Dir test rewards for every environment step.

Rewards are averaged over 20 trajectories (10 per task). Shaded

regions represent minimum and maximum rewards. Average

returns of BrunoSAC and the OracleSAC are 5645 and 6319 respec-

tively. Our results are incomparable to those ofVariBAD or PEARL,

where the maximum return is ∼2000. This is likely due to using

different versions of RL toolkits.
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Figure 5.8 Cheetah-Vel average rewards for each step. Rewards

are averaged over 300 trajectories (10 per test task). Average re-

turns of BrunoSAC and the OracleSAC are -93 and -66 respectively.

5.6 Discussion and conclusion

We presented a meta-RL method that relies on an exchangeable

C-BRUNO architecture suitably repurposed for doing task infer-

ence. The latter ability stems from trying to model the reward

and transition functions of multiple MDPs. This also makes C-

BRUNO appropriate for model-based RL inmeta-learning settings,

similar to how GPs or neural processes are used [103, 36]. For

instance, one could use planning algorithms based on predictive

probabilities of rewards and next states given by C-BRUNO. In

this work, however, we focused on a different approach in which

both C-BRUNO and the policy are trained during themeta-training

stage, and no changes are made at test time.

Our BrunoSAC advocates in favour of exchangeable architectures

for task inference in meta-RL. Sometimes, they are seen as being

more restrictive compared to recurrent neural networks [140].

However, this a sensible restriction since it directly encodes the

basic property of the processes we wish to model, as we have

shown in section 5.3. The preliminary results of BrunoSAC on

the two common benchmarks support our claim, though we

admit that any definite conclusions can only be made after an

94



5.6 Discussion and conclusion

extensive ablation study. We also anticipate that NPs, as another

representative of exchangeable models, would be a successful

replacement of C-BRUNO in our overall method. While NPs were

already used in PEARL, we think that PEARL made a number of

suboptimal choices and thus, in some aspects, was outperformed

byVariBAD – amethod that does not exploit exchangeability. A fur-

ther investigation into the behaviour of these models and factors

that determine their performance is left for future research.

An interesting application of BrunoSAC could be sim2real: a do-

main adaptation task addressing the simulation to reality gap [51].

In this problem, we want to find a policy to apply to a plant, for

instance, a robot, if we only have an imperfect model of the plant

available in the simulation. It is a common issue that policies

which work well on the simulator, fail to perform on the plant

because of the imperfections in the simulator. In this case, the

meta-RL setup is useful: we train BrunoSAC on the distribution of

simulators and then test its policy on the plant, where the policy

then autonomously narrows down its beliefs over θ and adjusts

its control accordingly.

From the sim2real perspective, we are sceptical that common

meta-RL benchmarks give an indication of how performant the

algorithms might be in reality. For instance, Cheetah-Dir and

Cheetah-Vel use the same transition function T , while only chang-
ing the reward functionR across MDPs. This the less useful case

for sim2real, where usually T varies andR is fixed. Moreover, the

meta-RL problem with different reward functions is substantially

simpler compared to when the MDP’s state transition graph de-

fined by T changes from one task to another. Only in the latter

case, the set of possible trajectories in the environment changes.

BrunoSAC follows the approach of VariBAD and Belief, which use

the BAMDPs theory to justify their methods. However, we are

uncertain if the theoretical results extend to what is implemented

in practice where the inference and acting modules are separated.

Namely, BAMDPs assume there exists a Bayes-optimal policy that

optimizes the expected return in anMDPwhose original states are

extended with the belief states. In meta-RL, we train on a number

of tasks and, given a sufficiently powerful model, we can find an

optimal policy for each of them. But what happens when test tasks
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are different from the ones we trained on? The theory does not

help us here, so we can only hope that the policy makes good use

of the unfamiliar belief states that it sees at test time. How far

such a policy is from the optimal is a difficult question to answer.

This problem does not appear to be illustrated appropriately in

the commonly used locomotion benchmarks.

There is another argument against the approach of separating

inference and acting modules as BrunoSAC, VariBAD, PEARL and

Belief do. While task inference is based on Bayesian principles,

the policy that uses outputs of the Bayesianmodel to select actions

is implemented as a black-box neural network. In many cases, we

cannot guarantee aneural network to behave reasonablywhenpre-

sentedwith far-out inputs. This leads to anatural questionwhether

the policy itself can be made Bayesian while encapsulating task

inference procedures in a principled way. We consider this to be

an interesting future line of research, where exchangeablemodels

might play an important role.
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6
Conclusions and Future Prospects

6.1 Conclusions

In this thesis, we devised a class of BRUNOmodels that combines

some appealing properties of nonparametric Bayesian methods

and deep neural networks in a way that is useful in meta-learning

tasks with complex high-dimensional observations. In a present

state of meta-learning research that is dominated by VAE-based

and MAML-based methods, BRUNO provides an alternative ap-

proach that was inspired by the fundamental principles behind

exchangeability. While exchangeability is often the weakest as-

sumption one could make, it is also, in many cases, the only

reliable piece of knowledge that we might have about the data

distribution. Explicitly learning to correlate data in order to

enforce exchangeability led us to the construction of BRUNO.

In Chapter 3, we described the architecture of BRUNO for mod-

elling exchangeable sequences of random variables and applied it

to common few-shot image generation and classification tasks

with rather successful results. On a simple example, we also

provided a proof of concept for the set anomaly detection. For

many models, we analysed their interpretable parameters and

gained insights into the behaviour of GPs and TPs. As a part of

our research into BRUNO, we obtained some theoretical results

such as the recurrent Bayesian updates of the parameters in

compound symmetry GPs and TPs, and a more efficient method
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of sampling from a Student-t distribution. Both results might be

useful additions to the statistical toolkit.

In Chapter 4, we presented C-BRUNO – a version of BRUNO

for modelling conditional distributions over the exchangeable

sequences. This was accomplished with a minor change to the

architecture of the original BRUNO that did not give in any of its

valuable properties. The resulting model proved competitive to

some of the state-of-the-art methods with more complex designs,

and we believe its performance can be further improved by using

better normalizing flows, which is an active area of research.

In Chapter 5, we looked at how C-BRUNO can be used for task

inference in meta-RL, where the assumption of conditional ex-

changeability is justified. We constructed BrunoSAC – a meta-

RL agent that uses C-BRUNO for inference and SAC for control.

In this way, BrunoSAC inherited the appealing features of both

components. Namely, from the RL perspective, our method was

shown to be sample efficient and fast to train, while from the

viewpoint of meta-learning, it could adapt to test tasks given only

a handful of observations.

Our models allow for several formulations and interpretations.

For example, in Section 3.4, we described BRUNO as a latent

variable model. To connect with a greater body of literature, let

us outline three other possible perspectives on BRUNO: as a set

model, an RNN and a stochastic process.

From a non-Bayesian perspective of other models such as Deep

Sets [137], BRUNO’s mechanism of enforcing permutation in-

variance can be viewed as a form of using sum-decomposable

functions defined as f(x1:n) = ρ(
∑n

i=1 φ(xi)), where ρ and φ
are some suitable transformations. In BRUNO, the summation

happens when we compute parameters of the posterior predictive

distribution in GPs or TPs. The form of φ and ρ is specified by

the stochastic process and the Real NVP mapping. Formulating

BRUNO in this way allows to analyse it using a wider set of

theoretical tools. For example,Wagstaff et al. [129] showed that

having a latent space at least as large as the number of input

elements is both necessary and sufficient for representing any

continuous function on a set. While in practicewemight be driven
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by performance measures and not the desire to approximate

arbitrary complex functions, these recent theoretical results are

still valuable for understanding the limitations of functions on sets

and for guiding our design choices when building such models.

Like other RNNs, BRUNO can be viewed as a memory model. At

present, the most used RNN architecture is an LSTM [52]. The

LSTM keeps its memory in a form of a state – a vector of numbers

whose values are updated or read out using gated operations such

as read, write and forget. The state of an LSTM can capture long-

termdependencies between elements of the input sequences in an

order sensitive manner. BRUNO, on the other hand, has an order-

invariant memory in the form of parameters of the predictive

posterior distribution. Moreover, BRUNO does not have a forget-

ting mechanism, which would break down the exchangeability.

Indeed, if we examine the recurrent updates of BRUNO, we would

see that the Bayesian posterior can store information about all the

inputs indefinitely.

By construction, BRUNO is a compound model that combines

stochastic processes with normalizing flows. Yet in itself, the

whole BRUNO is a stochastic process. Unlike with GPs or TPs,

here we do not have a simple form for the predictive posterior

p(xn+1|x1:n), however, we can still evaluate this density at the in-

puts and sample from it. While we designed ourmodels with high-

dimensional inputs settings in mind, when x is low-dimensional,

BRUNO becomes more similar to a warped GP [112].

There might exist a number of other ways to analyse, interpret

and gain a deeper understanding of the current BRUNOmodels.

Frankly, we are still surprised by the quality of BRUNO’s samples

considering that its architecture is fairly simple compared to other

models built for the same tasks. It is also exciting to contemplate

theways of extending the ideas behindBRUNOandhow itwould fit

into a greater picture of meta-learning. The next section presents

our thoughts on these topics.
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6.2 Future Prospects

Throughout the thesis, we mentioned a few apparent future lines

of research which we will now reiterate. Firstly, the idea we

started with, i.e. the exchangeability via traditional RNNs, was not

directly tackled in this thesis, and so it remains an openproblem to

build a more general and possibly a truly black-box exchangeable

recurrent model for implicit Bayesian inference in complex data

modelling scenarios. Secondly, from a theoretical standpoint,

it would be valuable to explore the truly conditional version of

de Finetti’s theorem for the case of bivariate processes. Thirdly,

BRUNO’s two-parts architecture allows for a number of variations

in both components, so below we will present a few rough ideas

on this topic. Afterwards, we will take a step back and speculate

about the future of meta-learning research.

Extension of BRUNO to discrete variables

Most of the flow-based models are designed for continuous data,

so they require inputs dequantization when dealing with discrete

variables and cannot readily yield categorical latents. For these

reasons, several discrete flow models have been recently pro-

posed [54, 88, 122]. One example is the Integer Discrete Flow

(IDF). It defines a bijective mapping between integer vectors from

the input space X = ZD and the latent space Z = ZD. IDFs use
additive coupling layers with only the translation term and thus no

Jacobian in the change of variables formula, i.e. p(x) = p(z). The
prior p(z) is picked to be well-suited for ordinal data: a factored

discretized logistic distribution or a mixture of such distributions.

These design choices are something to consider when integrating

IDFs or other discrete flowmodels into BRUNO. However, in our

opinion, the main undertaking would be to construct a fitting

exchangeable random process that would not compromise the

computational properties of BRUNO.
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More general frameworks for updating belief distributions

In the context of Bayesian neural networks (BNN)s it has been

frequently observed that Bayesian posteriors are not the ones

performing best. Often, the successful heuristics used in BNNs

do not follow the Bayesian paradigms, thus casting doubts on

the effectiveness of Bayesian posteriors in complex models and

our current understanding of their workings [132]. Below we will

briefly explain the idea behind BNNs and the existing alternatives

to Bayesian posteriors.

In a classical supervised setting, DNNs are trained to minimize

the negative log-likelihood of the labels possibly with an added

regularization termΩ(φ) overDNN’s parametersφ. Namely, given

a datasetD ofN labelled examples, we are interested in finding a

single value of parameters that approximately minimize the loss

L(φ) = − 1
n

∑N
i=1 log p(yi|xi,φ)+Ω(φ). In contrast, BNNs wish to

find a posterior distribution over the parameters: p(φ|D). Then
predicting labels for new observations will amount to approximat-

ing the predictive posterior: p(y|x,D) =
∫
p(y|x,φ)p(φ|D)dφ.

In a series of experiments, Wenzel et al. [132] showed that a

posterior p(φ|D) ∝ exp(−U(φ)/T ) with an energy function

U(φ) = −
∑N

i=1 log p(yi|xi,φ)− p(φ) and a temperature T , has
a better predictive performance at lower temperatures, when

T < 1 or T � 1. This “cold posterior” is a sharper distribution in

comparison to the true Bayesian posterior with T = 1. One can
also think of a cold posterior as being equivalent to the Bayesian

posterior that is computed based on a dataset of 1/T replicas

of each original observation and a prior p(φ)
1
T . At present, the

question of why the cold posteriors work better in practice largely

remains unanswered.

On a related note, Bissiri et al. [10] argue against the use of the

traditional likelihood function for some challenging applications.

Instead, they propose a more general framework where a prior

belief is updated to a posterior via a loss function that connects

parameters and observations. When this loss is the negative

log-likelihood, we recover standard Bayesian updates. However,

under their framework, it is also permissible to have the log-
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likelihood scaled with 1/T or choose other loss functions that

might better serve the end goal of the model.

In connection to BRUNO, it would be interesting to see how these

general update rules can be integrated into our model. While

they should improve the performance, would the computations

of the predictive posterior remain as simple? Would this model

still be justified from the perspective of some general de Finetti’s

theorem? Would such theorem exist at all? These and many other

questions are yet to be explored.

Bayesian policies in meta-RL

At the end of Chapter 5, we asked a question whether Bayesian

models can be used to define policies of the RL agents. Let us

speculate on how BRUNO-like models might help us here. In

BrunoSAC, our main assumption was the exchangeability of (r, s′)
conditionally on (s,a), and thus, with C-BRUNO we modelled

the predictive distribution p(rt+1, s
′
t+1|s1:t+1,a1:t+1, r1:t, s

′
1:t) for

t ≥ 0. If we nowwish to predict actions as well, we need to assume

conditional exchangeability of (a, r, s′) given s. We could then

model p(at+1, rt+1, s
′
t+1|s1:t+1,a1:t, r1:t, s

′
1:t) using C-BRUNO.Note

that this distribution naturally factorizes into a policy and amodel

of the MDP:

p(at+1, rt+1, s
′
t+1|s1:t+1,a1:t, r1:t, s

′
1:t) =

p(at+1|s1:t+1,a1:t, r1:t, s
′
1:t) p(rt+1, s

′
t+1|s1:t+1,a1:t+1, r1:t, s

′
1:t).

Our experiments with BrunoSAC showed that modelling of

p(rt+1, s
′
t+1|s1:t+1,a1:t+1, r1:t, s

′
1:t) is straightforward. Here,

the tricky part is the policy p(at+1|s1:t+1,a1:t, r1:t, s
′
1:t). Its

dependence on the history of previous transitions that include

r and s′ does not easily fit into the current BRUNO framework.

Namely, with C-BRUNO we could only model p(at+1|s1:t+1,a1:t).
It leads to the conclusion that both model and policy parts need

to be trained jointly, such that there is a flow of information about

r and s′ from one to the other. We leave the question of how this

could be done for a future research.
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Meta-learning

The ideas of meta-learning in various forms have been around

since the 80s [107], however, only recently it started gaining a

considerable amount of attention from the research community.

This is due to the realization of a wide gap between how learning

works in these models and in humans. Namely, given our prior

experiences and our abilities for learning, we can master a new

computer game or recognize a new type of bird just after playing

the game or seeing the bird a couple of times. Having models

that could do so too is an important milestone towards AGI.

This “learning to learn” ability is what meta-learning is trying

to achieve.

In our opinion, the past years in the meta-learning field were a

time of picking low-hanging fruit, for instance, on the problem of

few-shot classification. Even on the Omniglot dataset new splits

of the training and testing alphabets were adopted so to make

the task easier [73]. Moreover, many models are built with a

single task in mind, which makes it difficult to generalize their

principles across all the concept learning tasks. Finally, much

of the knowledge that a researcher has about the task and the

dataset gets encoded into the model during the process of its

design. Doing so is typically beneficial when dealing with classical

DNNs that aim at one application. However, we think that one

should exercise caution when working in meta-learning settings,

where the main purpose is to learn priors that can be quickly

adjusted even when confronted with examples way out of the

training distribution. For instance, in case of Omniglot, the model

is sure to receive a grayscale image of some character at test time,

and it might be utterly confused if the input is blank or has a

drawing of a swoose.

On a related issue, improving DNN components of meta-learning

models leads to better performance scores, but these gains are

misleading when trying to evaluate the true function of these

algorithms: their ability to adapt. Disentangling the progress in

deep learning and meta-learning is thus becoming a hopeless

task, and we cannot talk about advancing the field if we do not

know where we stand. We have to admit that our models fell into
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similar traps. At present, we think that the best way to proceed is

to establish a set of tasks, datasets and perhaps DNN architectures

so as to limit the influence of our choices on the aspects of models

that are not directly involved in the process of learning to learn.

On the bright side, there is a lot of interest in meta-learning, and

inevitably, it is paving the way for new challenges and approaches.

While BRUNOmodels are not likely to play an important role in

the grand scheme of things in meta-learning, we are quite certain

that exchangeability is here to stay. It is a very basic property,

which often goes unmentioned among themodelling assumptions.

Nevertheless, it can serve as a starting point for inventing new

types of models, and BRUNO is a tiny scratch on that surface.
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Appendix

A.1 Proofs and derivations

A.1.1 Lemmas

Lemma. [1] Given an exchangeable sequence x1, x2, . . . of random

variables xi ∈ X and a bijective mapping f : X 7→ Z, the sequence

f(x1), f(x2), . . . is exchangeable.

Proof. Consider a vector function g : Rn 7→ Rn such that

(x1, . . . , xn) 7→ (z1 = f(x1), . . . , zn = f(xn)). A change of variable

formula gives:

p(x1, x2, . . . , xn) = p(z1, z2, . . . , zn) |detJ | ,

where detJ =
∏n
i=1

∂f(xi)
∂xi

is the determinant of the Jacobian of g.
Since both the joint probability of (x1, x2, . . . , xn) and the |detJ |
are invariant to the permutation of sequence entries, so must be

p(z1, z2, . . . , zn). This proves that z1, z2, . . . is exchangeable. �

Lemma. [2] Given two exchangeable sequence x = x1, x2, . . . and

y = y1, y2, . . . of random variables, where xi is independent from yj
for ∀i, j, the concatenated sequence x_y = (x1, y1), (x2, y2), . . . is

exchangeable as well.
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Proof. For any permutation π, as both sequences x and y are

exchangeable we have:

p(x1, x2, . . . , xn)p(y1, y2, . . . , yn)

= p(xπ(1), xπ(2), . . . , xπ(n))p(yπ(1), yπ(2), . . . , yπ(n)).

Independence between elements in x and y allows to write it as a

joint distribution:

p((x1, y1), (x2, y2) . . . , (xn, yn)) =

p((xπ(1), yπ(1)), (xπ(2), yπ(2)), . . . , (xπ(n), yπ(n))),

and thus the sequence x_y is exchangeable. �

This lemma justifies our construction with independent exchange-

able processes in the latent space.

A.1.2 Derivation of recurrent updates for posterior predictive
parameters in CS TPs and GPs

We assume that x = (x1, x2, . . . xn) ∈ Rn follows a multivariate

Student-t distribution MV Tn(ν,µ,K) with degrees of freedom

ν ∈ R+\[0, 2],meanµ ∈ Rn and apositive definiten×n covariance
matrixK. Its density is given by:

p(x) =
Γ(ν+n2 )

((ν − 2)π)n/2Γ(ν/2)
|K|−1/2

×
(
1 +

(x− µ)TK−1(x− µ)
ν − 2

)− ν+n
2

.

Note that this parameterizationof themultivariate t-distribution as

defined by Shah et al. [109] is slightly different from the commonly

used one. We used this parametrization as it makes formulas

simpler.

If we partition x into two consecutive parts xa ∈ Rna and

xb ∈ Rnb : [
xa
xb

]
∼MV Tn

(
ν,

[
µa
µb

]
,

[
Kaa Kab

Kba Kbb

])
,

106



A.1 Proofs and derivations

the conditional distribution p(xb|xa) is given by [109]:

p(xb|xa) =MV Tnb
(ν + na, µ̃b,

ν + βa − 2

ν + na − 2
K̃bb), (A.1)

where

µ̃b =KbaK
−1
aa (xa − µa) + µb

βa = (xa − µa)TK−1
aa (xa − µa)

K̃bb =Kbb −KbaK
−1
aaKab.

(A.2)

Let us now simplify these equations for the case of exchangeable

sequences with µ = (µ, µ . . . µ) and the following covariance

structure:

K =


v ρ · · · ρ
ρ v · · · ρ
...

...
. . .

...

ρ ρ · · · v

 .

In our problem, we are interested in doing one-step predictions,

i.e. computing a univariate density p(xn+1|x1:n) with parameters

νn+1,µn+1, vn+1. Therefore, in Eq. A.1we can take: nb = 1,na = n,
xa = x1:n ∈ Rn, xb = xn+1 ∈ R,Kaa = K1:n,1:n,Kab = K1:n,n+1,

Kba =Kn+1,1:n andKbb =Kn+1,n+1 = v.

Computing parameters of the predictive distribution requires the

inverse ofKaa, which we can find using the Sherman-Morrison

formula:

K−1
aa = (A+ uvT )−1 = A−1 − A

−1uvTA−1

1 + vTA−1u
,

with

A =


v − ρ 0 · · · 0
0 v − ρ · · · 0
...

...
. . .

...

0 0 · · · v − ρ

 ,

u =


ρ
ρ
...

ρ

 , v =


1
1
...

1

 .
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After a few steps, the inverse ofKaa is:

K−1
aa =


an bn · · · bn
bn an · · · bn
...

...
. . .

...

bn bn · · · an


with

an =
v + ρ(n− 2)

(v − ρ)(v + ρ(n− 1))
,

bn =
−ρ

(v − ρ)(v + ρ(n− 1))
.

Note that entries ofK−1
aa explicitly depend on n.

Equations for themean and variance of the predictive distribution

require the following term:

KbaK
−1
aa =

(
ρ ρ · · · ρ

)
K−1
aa =

{ ρ

v + ρ(n− 1)

}
1:n
,

which is a 1× n vector.

We can now substitute this expression forKbaK
−1
aa into Eq. A.2

and write down the non-recurrent equations for parameters µn+1

and vn+1 of the posterior predictive distribution:

µn+1 =
ρ

v + ρ(n− 1)

n∑
i=1

(xi − µ) + µ

vn+1 = v − nρ2

v + ρ(n− 1)

The two equations above are also valid in the GP case, i.e. when

p(x) = Nn(µ,K) and p(xn+1|x1:n) = N (µn+1, vn+1). We could

have obtained the same results using conjugate Bayesian analysis

with the model discussed in Section 3.4. Let us now derive the

recurrent updates for µn+1 and vn+1. In both cases, we will need

the equations for the previous step:
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µn =
ρ

v + ρ(n− 2)

n−1∑
i=1

(xi − µ) + µ

vn = v − (n− 1)ρ2

v + ρ(n− 2)

The common part between µn+1 and µn is
∑n−1

i=1 (xi − µ), thus we
can rewrite µn+1 as follows:

µn+1 =
ρ

v + ρ(n− 1)

(
n−1∑
i=1

(xi − µ) + (xn − µ)

)
+ µ

=
ρ

v + ρ(n− 1)

(
(µn − µ)(v + ρ(n− 2))

ρ
+ (xn − µ)

)
+ µ

=
(µn − µ)(v + ρ(n− 2))

v + ρ(n− 1)
+

ρ

v + ρ(n− 1)
(xn − µ) + µ

= µn(1− dn) + dnxn.

In the last line of this derivation, we used the fact that
v+ρ(n−2)
v+ρ(n−1) = 1− ρ

v+ρ(n−1) , and denoted dn = ρ
v+ρ(n−1) . Using

similar reasoning, we can derive the recurrence for the variance.

Firstly, we will rewrite vn in the following form:

vn = v − nρ2

v + ρ(n− 1)

v + ρ(n− 2)

v + ρ(n− 1)
+

ρ2

v + ρ(n− 2)

= v − nρ2

v + ρ(n− 1)

1

1− dn
+

ρ2

v + ρ(n− 2)

From this equation, we can express nρ2

v+ρ(n−1) as a function of vn
and substitute it into vn+1:

vn+1 = v − (v − vn)(1− dn)−
ρ2

v + ρ(n− 1)

= vn(1− dn) + dn(v − ρ).

For TPs, we also need to derive a recurrent version for

βn+1 = (xa − µa)TK−1
aa (xa − µa).
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Let x̃ = xa − µa, then:

βn+1 = x̃
TK−1

aa x̃

= (anx̃1 + bn

n∑
i 6=1

x̃i, anx̃2 + bn

n∑
i 6=2

x̃i, . . . , anx̃n + bn
∑
i 6=n

x̃i)
T (x̃1, x̃2, . . . x̃n)

= (an − bn)
n∑
i=1

x̃2i + bn(

n∑
i=1

x̃i)
2.

Similarly, βn from p(xn|x1:n−1) is:

βn = (an−1 − bn−1)
n−1∑
i=1

x̃2i + bn−1(
n−1∑
i=1

x̃i)
2

We can now use the fact that
∑n−1

i=1 x̃
2
i is a common part between

βn+1 and βn:

βn+1 = (an − bn)(
n−1∑
i=1

x̃2i + x̃2n) + bn(

n∑
i=1

x̃i)
2

= (an − bn)
βn − bn−1(

∑n−1
i=1 x̃i)

2

an−1 − bn−1
+ (an − bn)x̃2n + bn(

n∑
i=1

x̃i)
2.

Given that an−bn
an−1−bn−1

= 1, we write βn+1 recursively as:

sn+1 = sn + x̃n

βn+1 = βn + (an − bn)x̃2n + bn(s
2
n+1 − s2n),

with s1 = 0.

A.1.3 Derivation of the posterior in CS TPs

It is easiest to think about multivariate Student-t distribution as

an infinite mixture of multivariate Gaussians where all Gaussians

have the samemeans but their covariance is scaledwith a different

factor. It has also been shown that the scale parameter r follows
an inverse gamma distibution, thus x ∼ MV Tn(ν,µ,K) when
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r ∼ Inv-Gamma(ν2 ,
1
2) and x ∼ Nn(µ, r(ν − 2)K) [109, 136]. Let

us write it as:

p(x1, . . . , xn) =MV Tn(ν,µ,K)

p(x1, . . . , xn|r) = Nn(µ, r(ν − 2)K)

p(r) = Inv-Gamma(
ν

2
,
1

2
)

We can represent the multivariate Gaussian in de Finetti’s form:

p(x1, . . . , xn|r) =
∫
p(xi|r, φ)p(φ|r)dφ, (A.3)

where given our usual assumptions, i.e. µ = (µ, . . . µ),Kii = v,
andKij,i6=j = ρ, Eq. 3.3 implies that p(φ|r) = N (µ, r(ν − 2)ρ) and
p(xi|φ, r) = N (φ, r(ν − 2)(v − ρ)).

If we write the marginal density as:

p(x1, . . . , xn) =

∫ ∫
p(xi|r, φ)p(φ, r)dφdr,

it becomes clear that the latent variable in de Finetti’s theo-

rem is θ = {φ, r}. Therefore, we wish to find the posterior

of φ and r given observations x1:n. The posterior can be writ-

ten as p(φ, r|x1:n) = p(φ|r, x1:n)p(r|x1:n), where both factors are

known. The first factor is a posterior from the model in Eq. A.3:

p(φ|r, x1:n) = N (µn, r(ν − 2)σ2n) with µn and σ2n given in Eq. 3.4.

The second one, p(r|x1:n) = Inv-Gamma(ν+n2 , 12(1 + βn
ν−2)) as

derived by Shah et al. [109].

A.1.4 Derivation of recurrent updates for parameters of the
posterior distribution in CS GPs

In Section 3.4 we derived the following equations for parameters

of the posterior distribution p(θ|z1:n) = N (µn, σ
2
n) in CS GPs:

µn =

(
1

ρ
+

n

v − ρ

)−1(
µ

ρ
+

∑n
i=1 zi
v − ρ

)

σ2n =

(
1

ρ
+

n

v − ρ

)−1
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Instead of these closed-form equations, we would like to have

the recurrent updates as we did for the posterior predictive distri-

bution. Fortunately, we do not have to derive everything from

scratch. Given that our likelihood is Gaussian with variance

v − ρ, the conjugate Bayesian analysis [86] tells us how to relate

parameters of the posterior with parameters of the predictive

posterior. Namely, p(zn+1|z1:n) = N (µn, σ
2
n + (v − ρ)). Thus, the

means of the two distributions are equal, and their variances

differ by a constant. We then immediately arrive to the following

result:
µn+1 = (1− dt)µn + dnzn

σ2n+1 = (1− dn)(σ2n − v + ρ),

with dn = ρ
v+ρ(n−1) , µ0 = 0 and σ20 = ρ.

A.2 Optional materials

A.2.1 BRUNO

Implementation details for BRUNOmodels

For simple datasets, such as MNIST, we found it tolerable to use

models that rely upon a general implementation of the Real NVP

coupling layer similarly to Papamakarios et al. [91]. Namely, when

scaling and translation functions s and t are fully-connected neu-

ral networks. In ourmodel, networks s and t share the parameters

in the first two dense layers with 1024 hidden units and ELU non-

linearity [19]. Their output layers are different: s endswith a dense

layerwith tanhand t endswith a dense layerwithout anonlinearity.
We stacked 6 coupling layers with alternating the indices of the

transformed dimensions between odd and even as described by

Dinh et al. [23]. For the first layer, which implements a logit

transformation of the inputs, namely f(x) = logit(α+ (1− 2α)x),
we used α = 10−6. The logit transformation ensures that when

taking the inversemapping during sample generation, the outputs

always lie within ( −α
1−2α ,

1−α
1−2α).

In Omniglot, Fashion MNIST and CIFAR-10 experiments, we built

upon a Real NVP model originally designed for CIFAR-10 by Dinh
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et al. [24]: a multi-scale architecture with deep convolutional

residual networks in the coupling layers. Our main difference was

the use of coupling layers with fully-connected s and t networks
(as described above) placed on top of the original convolutional

Real NVP model. We found that adding these layers allowed for

faster convergence and improved results. This is likely due to

better mixing of the information before the output of the Real

NVP gets into the Student-t layer. We also found that using weight

normalisation [105] within every s and t function was crucial for

successful training of large models.

The model parameters were optimized using RMSProp [120] with

a decaying learning rate starting from 10−3. Trainable parameters

of a TP or GP were updated with a 10x smaller learning rate and

were initialized as following: νd = 1000, vd = 1., ρd = 0.1 for every
dimension d. Themean µd was fixed at 0. For the Omniglot model,

we used a batch size of 32, the sequence length of 20 and trained

for 200K iterations. The other models were trained for a smaller

number of iterations, i.e. ranging from 50K to 100K updates.

Parameters analysis

In addition to the analysis of correlations in the Omniglot model

from Section 3.5.1, we provide the results for CIFAR-10 andMNIST

models in Figure A.1.

For TP-based models, degrees of freedom νd were initialized to

1000, thus making TPs close to a GPs. After training, most of the

dimensions retain fairly high degrees of freedom, but some can

have small ν’s. One can notice from Figure A.2 that dimensions

with high correlation tend to have smaller degrees of freedom.

We noticed that CS TPs and GPs can behave differently for certain

settings of hyperparameters even when TPs have high degrees of

freedom. Figure A.3 gives one example when this is the case.
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Figure A.1 Number of dimensions where ρd/vd > ε plotted on

a double logarithmic scale. Top: CIFAR-10 model Bottom: Non-

convolutional MNISTmodel.
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FigureA.2 Correlation ρd/vd versus degrees of freedom νd for every
d. Degrees of freedom on the x-axis are plotted on a logarithmic

scale. Top: Omniglot model. Middle: CIFAR-10 model Bottom:

Non-convolutional version of BRUNO trained on MNIST.
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Figure A.3 A toy example which illustrates how degrees of free-

dom ν affect the behaviour of a TP compared to a GP. Here, we

generate one sequence of 100 observations from an multivariate

normal disribution with parameters µ = 0., v = 0.1, ρ = 0.05 and
evaluate predictive probabilities under CS TP and GP models with

parameters µ = 0., v = 1., ρ = 0.01 and different ν for TP in the

top and bottom plots.
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Sampling algorithm for a Student-t distribution

Algorithm 4 Efficient sampling on a GPU from a univariate t-

distribution with mean µ, variance v and degrees of freedom ν

a, b← U(0, 1)
c← min(a, b)
r ← max(a, b)
α← 2πc

r

t← cos(α)
√
(ν/r2)(r−4/ν − 1)

σ ←
√
v
(
ν−2
ν

)
return µ+ σt

BRUNO samples

Figure A.4 Samples from the prior for Omniglot, CIFAR-10, Fash-

ion MNIST and MNIST models. CIFAR-10 and Fashion MNIST

models were trained on examples from all 10 classes, MNIST was

only trained on even digits.
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Figure A.5 Samples from a model trained on Omniglot. Condi-

tioning images come from character classes that were not used

during training, so when n is small, the problem is equivalent to a

few-shot generation.
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Figure A.6 Continuation of Figure A.5.
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Figure A.7 Samples fromamodel trained onCIFAR-10. Themodel

was trained on the dataset with 10 classes. Conditioning images

in the top row of each subplot come from the test set.
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Figure A.8 CIFAR-10 samples from p(x|x1:n) for every n =
480, . . . , 500. Left: input sequence (given in the top row of each

subplot) is composed of random same-class test images. Right:

same image is given as input at every step. In both cases, input

images come from the test set of CIFAR-10 and the model was

trained on all of the classes.
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Figure A.9 Samples from a convolutional BRUNOmodel trained

on Fashion MNIST. The model was trained on the set with 10

classes. Conditioning images in the top row of each subplot come

from the test set.
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A.2.2 C-BRUNO

ShapeNet view generation

In our experiments, we closely follow the setup of Gordon et al.

[40]. Namely, we use the same train-test split of 37,108 objects from

12 ShapeNet classes: airplane, bench, cabinet, car, phone, chair,

display, lamp, speaker, sofa, table, boat. Each object is available

in 36 views spaced 10 degrees in azimuth around the object. This

dataset and the code to reproduce Versa’s results are provided by

the authors at github.com/Gordonjo/versa. We train C-BRUNO

in an episodic manner with 4 random tasks per batch. In each

task, the model is given one random view of an object and it is

required to assign likelihoods to other 16 random views of the

same object. Below, we provide additional 1-shot samples from

the two models.

Figure A.10 One-shot C-BRUNO samples in rows A-C and Versa

samples in row D for the unseen test objects. Here, we condition

on a single view (x1,h1) marked in red. The top row of each

plot contains ground truth images, whereas the three rows A to

C are the C-BRUNO samples from p(x|h,x1,h1) conditioned on a

different angle h in each column.
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Figure A.11 Continuing Figure A.10.
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1D regression

For the toy 1D regression tasks we use C-BRUNO and NPs with a

2-dimensional latent space. The MAF architecture of C-BRUNO

consists of 7 autoregressive layers, in which scale and translation

networks share 3 hidden layers of 32 units. Two of these layers

are responsible for computing the features of h. The code for NPs
is adapted from github.com/deepmind/neural-processes. The
encoder network of NPs is 4-layer MLP with 128 units per layer,

and the decoder has 2 hidden layers of the same size. We train both

models for 100K update steps on batches of 16 sequences. Each

sequence is of length 50, and the context is sampled randomly per

batch.

A.2.3 BrunoSAC

Model hyperparameters

Niter 2500

Nupdates 200

Nbatch 10

Npretrain 250

γ 0.99

λV , λQ, λφ 0.001

trajectory length 200

training sequence length 100

context length k ∼ U(25, 75)

MAF architecture

6 autoregressive layers with 2 hid-

den layers of 128 units (one layer for

inputs x and one for the condition

h), ReLU [87] activation

dimensionality of Z 5

Policy network architecture
2 hidden layers of 128 units with

leaky ReLU activation

Value and action-value net-

work achitectures

1 hidden layer of 128 units with

leaky ReLU activation
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